日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. C.且 D..與成等角 查看更多

           

          題目列表(包括答案和解析)

          平面α、β所成角的大小為定值,a、b為一對異面直線,下列條件:①a∥α,bβ;②a⊥α,b∥β;③a⊥α,b⊥β;④a∥α,b∥β且a與α的距離等于b與β的距離.其中能使a、b所成的角為定值的有(    )

          A.0個           B.1個           C.2個           D.3個

          查看答案和解析>>

          平面α、β所成角的大小為定值,a、b為一對異面直線,下列條件:

          ①a∥α,bβ;

          ②a⊥α,b∥β;

          ③a⊥α,b⊥β;

          ④a∥α,b∥β且a與α的距離等于b與β的距離.

          其中能使a、b所成的角為定值的有

          [  ]

          A.0個

          B.1個

          C.2個

          D.3個

          查看答案和解析>>

          平面α、β所成角的大小為定值,a、b為一對異面直線,下列條件:①a∥α,;②a⊥α,b∥β;③a⊥α,b⊥β;④a∥α,b∥β且a與α的距離等于b與β的距離.其中能使a、b所成的角為定值的有

          [  ]

          A.0個

          B.1個

          C.2個

          D.3個

          查看答案和解析>>

          如圖,在平面直角坐標系中,Ω是一個與x軸的正半軸、y軸的正半軸分別相切于點C、D的定圓所圍成區(qū)域(含邊界),A、B、C、D是該圓的四等分點,若點P(x,y)、P′(x′,y′)滿足x≤x′且y≥y′,則稱P優(yōu)于P′,如果Ω中的點Q滿足:不存在Ω中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣。ā 。
          A.








          AB
          B.








          BC
          C.








          CD
          D.








          DA
          精英家教網

          查看答案和解析>>

          (1)選修4-2:矩陣與變換
          已知二階矩陣M有特征值λ=3及對應的一個特征向量
          e1
          =
          1
          1
          ,并且矩陣M對應的變換將點(-1,2)變換成(3,0),求矩陣M.
          (2)選修4-4:坐標系與參數(shù)方程
          過點M(3,4),傾斜角為
          π
          6
          的直線l與圓C:
          x=2+5cosθ
          y=1+5sinθ
          (θ為參數(shù))相交于A、B兩點,試確定|MA|•|MB|的值.
          (3)選修4-5:不等式選講
          已知實數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分.

          1.A  2.C  3.C  4.A   5.C   6.C  7.B  8.C   9.D  10.D   11.D  12.D

          二、填空題:本大題共4小題,每小題4分,共16分.

          13.   14.    15.     16.40

          三、解答題:本大題共6小題,共74分解答應寫出文字說明,證明過程或演算步驟.

          17.解:

          ,聯(lián)合

          ,即

          時,

          時,

          ∴當時,

          時,

          18.解:由題意可知,這個幾何體是直三棱柱,且AC⊥BC,AC=BC=CC1.

             (1)連結AC1,AB1.

              由直三棱柱的性質得AA1⊥平面A1B1C1,所以AA1⊥A1B1,則四邊形ABB1A1為短形.

              由矩形性質得AB1過A1B的中點M.

          在△AB1C1中,由中位線性質得MN//AC1,

              又AC1平面ACC1A1,MN平面ACC1A1,

          所以MN//平面ACC1A1

             (2)因為BC⊥平面ACC1A1,AC平面ACC1A1,所以BC⊥AC1.

          在正方形ACC1A1中,A1C⊥AC1.

          又因為BC∩A1C=C,所以AC1⊥平面A1BC.

          由MN//AC1,得MN⊥平面A1BC

          19.解:(1)基本事件空間與點集中                                     

          的元素一一對應. 

              因為S中點的總數(shù)為5×5=25(個),所以基本事侉總數(shù)為n=25

              事件A包含的基本事件數(shù)共5個:

              (1,5)、(2,4)、(3,3)、(4,2)、(5,1),

          所以

             (2)B與C不是互斥事件.因為事件B與C可以同時發(fā)生,如甲贏一次,乙贏兩次的事件即符合題意

             (3)這種游戲規(guī)則不公平.由 (Ⅰ)知和為偶數(shù)的基本事件數(shù)為13個:

          (1,1)、(1,3)、(1,5)、(2,2)、(2,4)、(3,1)、(3,3)、(3,5)、(4,2)、(4,4)、(5,1)、 (5,3)、(5,5)

          所以甲贏的概率為,乙贏的概率為,

              所以這種游戲規(guī)則不公平.

          20.(1)依題意,點的坐標為,可設,

          直線的方程為,與聯(lián)立得

          消去

          由韋達定理得,

          于是

          ,

          *   ,

             (2)假設滿足條件的直線存在,其方程為,

          的中點為,為直徑的圓相交于點,的中點為,

          ,點的坐標為

          ,

          ,得,此時為定值,故滿足條件的直線存在,其方程為,即拋物線的通徑所在的直線.

          21.解:(1)當時,,

          ,∴上是減函數(shù).

             (2)∵不等式恒成立,即不等式恒成立,

          不等式恒成立. 當時,  不恒成立;

          時,不等式恒成立,即,∴.

          時,不等式不恒成立. 綜上,的取值范圍是.

          22.解:(1)∵ 的橫坐標構成以為首項,為公差的等差數(shù)列

          .

          位于函數(shù)的圖象上,

          ,

          ∴ 點的坐標為.

             (2)據題意可設拋物線的方程為:,

          ∵ 拋物線過點(0,),

          ,

            ∴

          ∵ 過點且與拋物線只有一個交點的直線即為以為切點的切線,

          ),

             (3)∵    

          中的元素即為兩個等差數(shù)列中的公共項,它們組成以為首項,以為公差的等差數(shù)列.

          ,且成等差數(shù)列,中的最大數(shù),

          ,其公差為

          *時,,

          此時    ∴ 不滿足題意,舍去.

          *時,,

          此時,

          時,

          此時, 不滿足題意,舍去.

          綜上所述,所求通項為

           

           

           


          同步練習冊答案