日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16.給出下列四個(gè)結(jié)論: 查看更多

           

          題目列表(包括答案和解析)

          給出下列四個(gè)結(jié)論:
          ①在△ABC中,∠A>∠B是sinA>sinB的充要條件;
          ②某企業(yè)有職工150人,其中高級(jí)職稱15人,中級(jí)職稱45人,一般職員90人,若用分層抽樣的方法抽出一個(gè)容量為30的樣本,則一般職員應(yīng)抽出20人;
          ③如果函數(shù)f(x)對(duì)任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);
          ④已知點(diǎn)(
          π
          4
          ,0)和直線x=
          π
          2
          分別是函數(shù)y=sin(ωx+φ)(ω>0)圖象的一個(gè)對(duì)稱中心和一條對(duì)稱軸,則ω的最小值為2;其中正確結(jié)論的序號(hào)是
           
          .(填上所有正確結(jié)論的序號(hào)).

          查看答案和解析>>

          15、給出下列四個(gè)結(jié)論:
          ①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
          ②“若am2<bm2,則a<b”的逆命題為真;
          ③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
          ④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
          其中正確結(jié)論的序號(hào)是
          ①④
          (填上所有正確結(jié)論的序號(hào))

          查看答案和解析>>

          給出下列四個(gè)結(jié)論:①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;③函數(shù)y=
          1
          2
          +
          1
          2x-1
          (x≠0)是奇函數(shù)且函數(shù)y=x(
          1
          3x-1
          +
          1
          2
          )
          (x≠0)是偶函數(shù);④函數(shù)y=cos|x|是周期函數(shù).其中正確結(jié)論的序號(hào)是
           
          .(填寫你認(rèn)為正確的所有結(jié)論序號(hào))

          查看答案和解析>>

          給出下列四個(gè)結(jié)論:
          ①“若am2<bm2,則a<b”的逆命題為真;
          ②命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
          ③若a>0,b>0,A為a,b的等差中項(xiàng),正數(shù)G為a,b的等比中項(xiàng),則ab≥AG
          ④已知函數(shù)f(x)=log2x+logx2+1,x∈(0,1),則f(x)的最大值為-1.
          其中正確結(jié)論的序號(hào)是
           

          查看答案和解析>>

          7、給出下列四個(gè)結(jié)論:
          ①命題“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
          ②給出四個(gè)函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的函數(shù)有3個(gè);
          ③已知a,b∈R,則“等式|a+b|=|a|+|b|成立”的充要條件是“ab≥0”;
          ④若復(fù)數(shù)z=(m2+2m-3)+(m-1)i是純虛數(shù),則實(shí)數(shù)m的值為-3或1.
          其中正確的個(gè)數(shù)是( 。

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分.

          1―5CADAD   6―10BACBC   11―12BD

          二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

          13.  14.3  15. 16.③④

          三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

          17.(本小題滿分12分)

                 解:(I)由題意知……………………1分

                

                 ………………………………………………………6分

                

                 ………………………………………………8分

             (II)

                 …………………………10分

                

                 最大,其最大值為3.………………12分

          18.(本小題滿分12分)

                 解證:設(shè)PA=1.

             (I)由題意PA=BC=1,AD=2.……………………………………2分

                

                 由勾股定理逆定理得ACCD.……………………………………3分

                 又∵PA⊥面ABCD,CDABCD,

                 ∴PACD. 又PAAC=A,∴CD⊥面PAC.……………………5分

                 又CDPCD,∴面PAD⊥面PCD.……………………6分

             (II)作CFAB交于ADF,作EFAP交于PDE,連接CE.……8分

          文本框:         ∵CFAB,EFPA,CFEF=FPAAB=A,

                 ∴平面EFC∥平面PAB.………………10分

                 又CE平面EFC,∴CE∥平面PAB.

                 ∵BC=AF=BC,

                 ∴FAD的中點(diǎn),∴EPD中點(diǎn).

                 故棱PD上存在點(diǎn)E,且EPD中點(diǎn),使CE∥面PAB.……………………12分

          19.(本小題滿分12分)

                 解:(I)設(shè)捕撈n年后開始盈利,盈利為y元,

                 則…………3分

                 當(dāng)y>0時(shí),得

                 解得

                 所以,該船捕撈3年后,開始盈利.……………………………………6分

             (II)①年平均盈利為,

                 當(dāng)且僅當(dāng)2n=,即n=7時(shí),年平均盈利最大.……………………8分

                 ∴經(jīng)過7年捕撈后年平均盈利最大,共盈利12×7+26=110萬元.…………9分

                 ②的最大值為102.…11分

                 ∴經(jīng)過10年捕撈后盈利總額達(dá)到最大,共盈利102+10=112萬元.

                 故方案②較為合算.…………………………………………………………12分

          20.(本小題滿分12分)

                 解:(I)由題意知

                 是等差數(shù)列.…………………………………………2分

                

                 ………………………………5分

             (II)由題設(shè)知

                

                 是等差數(shù)列.…………………………………………………………8分

                

                 ………………………………10分

                 ∴當(dāng)n=1時(shí),;

                 當(dāng)

                 經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

          21.(本小題滿分12分)

                 解:(I)                令…………………3分

                 當(dāng)0<x<1時(shí),單調(diào)遞增;

                 當(dāng)單調(diào)遞減.

                 …………………………6分

             (II)由(I)知,當(dāng)x=1時(shí),取得最大值,

                 即…………………………………………………………8分

                 由題意恒成立,

                 ……………………………………………10分

                 解得a>2或a<-1,即所求a的范圍(-∞,-1)∪(2,+∞).…………12分

          22.(本小題滿分14分)

                 解:(I)由已知得設(shè)

                 由

                 …………………………………………2分

                

                     同理…………………………………………4分

                 …………6分

             (II)當(dāng)m=0時(shí),A(1,),B(1,-),D(4,),E(4,-).

                 ∵ABED為矩形,∴N………………8分

                 當(dāng)

                

                 ,即A、N、E三點(diǎn)共線.……………………………………12分

                 同理可證,B、ND三點(diǎn)共線.

                 綜上,對(duì)任意m,直線AE、BD相交于定點(diǎn)…………………14分

           

           


          同步練習(xí)冊(cè)答案