日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在正實(shí)數(shù)集上的函數(shù).其中.設(shè)兩曲線(xiàn)有公共點(diǎn).且在公共點(diǎn)處的切線(xiàn)相同. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿(mǎn)分13分)已知數(shù)列{an},定義n∈N+)是數(shù)列{an}的倒均數(shù).    (1)若數(shù)列{an}的倒均數(shù)是,求數(shù)列{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}的首項(xiàng)為–1,公比為q =,其倒均數(shù)為Vn,問(wèn)是否存在正整數(shù)m,使得當(dāng)nm(n∈N+)時(shí),Vn<–16恒成立?若存在,求m的最小值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          (本小題滿(mǎn)分13分)已知數(shù)列,定義其倒均數(shù)是。
          (1)求數(shù)列{}的倒均數(shù)是,求數(shù)列{}的通項(xiàng)公式;
          (2)設(shè)等比數(shù)列的首項(xiàng)為-1,公比為,其倒數(shù)均為,若存在正整數(shù)k,使恒成立,試求k的最小值。

          查看答案和解析>>

          (本小題滿(mǎn)分13分)
          已知,在水平平面上有一長(zhǎng)方體旋轉(zhuǎn)得到如圖所示的幾何體.

          (Ⅰ)證明:平面平面
          (Ⅱ)當(dāng)時(shí),直線(xiàn)與平面所成的角的正弦值為,求的長(zhǎng)度;
          (Ⅲ)在(Ⅱ)條件下,設(shè)旋轉(zhuǎn)過(guò)程中,平面與平面所成的角為長(zhǎng)方體的最高點(diǎn)離平面的距離為,請(qǐng)直接寫(xiě)出的一個(gè)表達(dá)式,并注明定義域.

          查看答案和解析>>

          (本小題滿(mǎn)分13分)

          已知二次函數(shù)同時(shí)滿(mǎn)足:①不等式的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立.

          設(shè)數(shù)列的前項(xiàng)和

          (1)求數(shù)列的通項(xiàng)公式;

          (2)數(shù)列中,令,求

          (3)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿(mǎn)足的正整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的變號(hào)數(shù)。令為正整數(shù)),求數(shù)列的變號(hào)數(shù).

           

          查看答案和解析>>

          (本小題滿(mǎn)分13分)

          已知函數(shù),,其中R.

          (1)當(dāng)a=1時(shí),判斷的單調(diào)性;

          (2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

          (3)設(shè)函數(shù),當(dāng)時(shí),若,,總有

          成立,求實(shí)數(shù)的取值范圍.

           

          查看答案和解析>>

          一、選擇題

          ADBBD  ABBAD

          二、填空題

          11、        12、          13、C      14、21           15、          16、(-,0)

          三、解答題

          17、解:(1)    4分

          f(x)的最小值為3

          所以-a+=3,a=2

          f(x)=-2sin(2x+)+5                                  6分

          (2)因?yàn)?-)變?yōu)榱?),所以h=,k=-5

          由圖象變換得=-2sin(2x-)            8分

          由2kp+≤2x-≤2kp+    得kp+≤x≤kp+  所以單調(diào)增區(qū)間為

          [kp+, kp+](k∈Z)       13分

          18、解:(1)如圖,在四棱錐中,

          BCAD,從而點(diǎn)D到平面PBC間的距離等于點(diǎn)A

          到平面PBC的距離.         2分

          ∵∠ABC=,∴AB⊥BC,

          PA⊥底面ABCD,∴PA⊥BC

          BC⊥平面  PAB,                 4分

          ∴平面PAB⊥平面PBC,交線(xiàn)為PB,

          過(guò)AAEPB,垂足為E,則AE⊥平面PBC,

          ∴AE的長(zhǎng)等于點(diǎn)D到平面PBC的距離.

          ,∴

          即點(diǎn)D到平面PBC的距離為.                 6分

          (2)依題意依題意四棱錐P-ABCD的體積為,

          ∴(BC+AD)AB×PA=,∴,                 8分

          平面PDC在平面PAB上的射影為PAB,SPAB=,         10分

          PC=,PD=,DC=,SPDC=a2,           12分

          設(shè)平面PDC和平面PAB所成二面角為q,則cosq==

          q=arccos.    13分

          19、解:(1)從10 道不同的題目中不放回地隨機(jī)抽取3次,每次只抽取1道題,抽法總數(shù)為只有第一次抽到藝術(shù)類(lèi)數(shù)目的抽法總數(shù)為

                                             5分

          (2)抽到體育類(lèi)題目的可能取值為0,1,2,3則

              

          的分布列為

          0

          1

          2

          3

           

          P

          10分

                                   11分

          從而有                   13分

          20、解:(1)設(shè)在公共點(diǎn)處的切線(xiàn)相同

                                   1分

          由題意知       ,∴    3分

          得,,或(舍去)

          即有                                        5分

          (2)設(shè)在公共點(diǎn)處的切線(xiàn)相同

          由題意知    ,∴

          得,,或(舍去)      7分

          即有            8分

          ,則,于是

          當(dāng),即時(shí),;

          當(dāng),即時(shí),                 11分

          的最大值為,故的最大值為   13分

          21、解:(1)∵且|PF1|+|PF2|=2a>|F1F2|(a>)

          ∴P的軌跡為以F1、F2為焦點(diǎn)的橢圓E,可設(shè)E:(其中b2=a2-5)    2分

          在△PF1F2中,由余弦定理得

          ∴當(dāng)且僅當(dāng)| PF1 |=| PF2 |時(shí),| PF1 |?| PF2 |取最大值,         4分

          此時(shí)cos∠F1PF2取最小值

          令=a2=9,

          ∵c ∴b2=4故所求P的軌跡方程為           6分

          (2)設(shè)N(s,t),M(x,y),則由,可得(x,y-3)=λ(st-3)

          x=λs,y=3+λ(t-3)           7分

          而M、N在動(dòng)點(diǎn)P的軌跡上,故且

          消去S得解得        10分

          又| t |≤2,∴,解得,故λ的取值范圍是[,5]      12分

          22、解:(1)由,得,代入,得,

          整理,得,從而有,,

          是首項(xiàng)為1,公差為1的等差數(shù)列,.          4分

          (2),  ,

          ,

          .                  8分

          (3)∵

          .

          由(2)知,,

          .     12分

           


          同步練習(xí)冊(cè)答案