日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 綜上.當時.沒有極值, 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則。

          依題意得:,即    解得

          第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關系得到單調(diào)性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,!上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調(diào)遞增!最大值為。

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>

          已知函數(shù),其中.

            (1)若處取得極值,求曲線在點處的切線方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問,處取得極值

          所以,,解得,此時,可得求曲線在點

          處的切線方程為:

          第二問中,易得的分母大于零,

          ①當時, ,函數(shù)上單調(diào)遞增;

          ②當時,由可得,由解得

          第三問,當時由(2)可知,上處取得最小值

          時由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時,求的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)f(x)=x3+ax2+(a+6)x+1在R上沒有極值,則實數(shù)A的取值范圍(  )

          查看答案和解析>>

          設函數(shù)f(x)=x3+ax2-a2x+m(a≥0).
          (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點,求a的取值范圍;
          (Ⅲ)若對任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.

          查看答案和解析>>

          設函數(shù)f(x)=x3+ax2-a2x+m(a>0)
          (1)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點,求實數(shù)a的取值范圍;
          (2)a=1時函數(shù)f(x)有三個互不相同的零點,求實數(shù)m的取值范圍;
          (3)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>


          同步練習冊答案