日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又BE平面BEN.∴BE∥平面PCD. ------------- 8分(Ⅲ)同解法二. 查看更多

           

          題目列表(包括答案和解析)

          (2010•南寧二模)已知四棱錐中P-ABCG中,底面ABCG是矩形,D為AG的中點(diǎn),BC=2AB=2,又PB⊥平面ABCG,且PB=1,點(diǎn)E在棱PD上,且DE=2PE
          (Ⅰ)求異面直線PA與CD所成的角的大;
          (Ⅱ)求證:BE⊥平面PCD.

          查看答案和解析>>

          精英家教網(wǎng)已知四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.
          (Ⅰ)求異面直線PA與CD所成的角的大小;
          (Ⅱ)求證:BE⊥平面PCD;
          (Ⅲ)求二面角A-PD-B的大。

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

          (I)求證:PD⊥BC;

          (II)求二面角B—PD—C的正切值。

          【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

          BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

          ∴PD⊥BC.

          第二問中解:取PD的中點(diǎn)E,連接CE、BE,

          為正三角形,

          由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

          ∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。

           

          查看答案和解析>>

          (本小題滿分12分)

          已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

          (I)求異面直線PA與CD所成的角的大小;

          (II)求證:BE⊥平面PCD;

          (III)求二面角A—PD—B的大小.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案