日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 構成等差數(shù)列. 查看更多

           

          題目列表(包括答案和解析)

          等差數(shù)列{an}的首項和公差都是
          23
          ,記{an}前n項和為Sn.等比數(shù)列{bn}各項均為正數(shù),公比為q,記{bn}的前n項和為Tn
          (Ⅰ) 寫出Si(i=1,2,3,4,5)構成的集合A;
          (Ⅱ) 若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得Tk,T2k同時為集合A中的元素?若存在,寫出所有符合條件的{bn}的通項公式;若不存在,請說明理由;
          (Ⅲ) 若將Sn中的整數(shù)項按從小到大的順序構成數(shù)列{cn},求{cn}的一個通項公式.

          查看答案和解析>>

          等差數(shù)列{a}是遞增數(shù)列,前n項和為Sn,且a1,a2,a5成等比數(shù)列,S5=a32
          (1)求通項an;
          (2)令bn=
          1
          2
          (
          an+1
          an
          +
          an
          an+1
          )
          ,設Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數(shù)n恒成立,求實數(shù)M、m的取值范圍;
          (3)試構造一個函數(shù)g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
          1
          3
          (n∈N+)
          恒成立,且對任意的m∈(
          1
          4
          1
          3
          )
          ,均存在正整數(shù)N,使得當n>N時,f(n)>m.

          查看答案和解析>>

          等差數(shù)列{a}是遞增數(shù)列,前n項和為Sn,且a1,a2,a5成等比數(shù)列,
          (1)求通項an;
          (2)令bn=,設Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數(shù)n恒成立,求實數(shù)M、m的取值范圍;
          (3)試構造一個函數(shù)g(x),使恒成立,且對任意的,均存在正整數(shù)N,使得當n>N時,f(n)>m.

          查看答案和解析>>

          設等差數(shù)列{an}的前n項和是Sn,已知S3=9,S6=36.
          (1)求數(shù)列{an}的通項公式;
          (2)是否存在正整數(shù)m、k,使am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,說明理由;
          (3)設數(shù)列{bn}的通項公式為bn=3n-2.集合A={x|x=an,n∈N*},B={x|x=bn,n∈N*}.將集合A∪B中的元素從小到大依次排列,構成數(shù)列c1,c2,c3,…,求{cn}的通項公式.

          查看答案和解析>>

          在等差數(shù)列{an}中,a1142,d=-2,從第一項起,每隔兩項取出一項,構成新的數(shù)列{bn},則此數(shù)列的前n項和Sn取得最大值時n的值是(  )

          A23 B24 C25 D26

           

          查看答案和解析>>

          一、選擇題(每小題5分,共50分)

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          B

          A

          B

          B

          C

          C

          A

          D

          C

          D

           

          二、填空題(每小題5分,共20分)

          11.     8     ;              12. AC⊥BD ( ABCD是正方形或菱形); 

          13.         ;              14.           ;

          三、解答題(本大題共6小題,共80分. 解答應寫出文字說明、證明過程或演算步驟)

          15.(本小題滿分12分)

          解:(1)           …………………………1分

                ………………………………2分

          .      ………………………………………4分

          的最小正周期是.      …………………………………6分

          (2)由      …………………….8分

          ,∴ ∴     …………10分

                 ………………………………………………12分

          16.(本小題滿分12分)

          解:(1)當時,,對任意

                為偶函數(shù)   ……………………3分

                當時,

                取,得    

                  函數(shù)既不是奇函數(shù),也不是偶函數(shù)……6分

          (2)解法一:要使函數(shù)上為增函數(shù)等價于上恒成立                              ……………8分

          上恒成立,故上恒成立

                             …………………………………10分

          ∴  的取值范圍是           ………………………………12分

          解法二:設

              ………8分 

              要使函數(shù)上為增函數(shù),必須恒成立

              ,即恒成立   …………………………………10分

              又,  

              的取值范圍是       ………………………………12分

          17.(本小題滿分14分)

          證明: (1)取PC的中點G,連結(jié)FG、EG

          ∴FG為△CDP的中位線  ∴FGCD……1分

          ∵四邊形ABCD為矩形,E為AB的中點

          ∴ABCD     ∴FGAE

          ∴四邊形AEGF是平行四邊形   ………………2分

          ∴AF∥EG                       ………3分

          又EG平面PCE,AF平面PCE  ………4分

          ∴AF∥平面PCE   ………………………………………5分

               (2)∵ PA⊥底面ABCD

          ∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A

          ∴CD⊥平面ADP

          又AF平面ADP         ∴CD⊥AF ……………………………… 6分

          直角三角形PAD中,∠PDA=45°

          ∴△PAD為等腰直角三角形   ∴PA=AD=2   …………………………  7分

          ∵F是PD的中點

          ∴AF⊥PD,又CDPD=D

          ∴AF⊥平面PCD                    ………………………………  8分

          ∵AF∥EG

          ∴EG⊥平面PCD                    ……………………………  9分

          又EG平面PCE

          平面PCE⊥平面PCD                 …………………………… 10分

          (3)三棱錐C-BEP即為三棱錐P-BCE     ……………………………11分

          PA是三棱錐P-BCE的高,

          Rt△BCE中,BE=1,BC=2,

          ∴三棱錐C-BEP的體積

          VC-BEP=VP-BCE= … 14分

          18.(本小題滿分14分)

          解:(1)由已知得          解得.…………………1分

              設數(shù)列的公比為,由,可得

          ,可知,即,      …………………4分

          解得

          由題意得.  .………………………………………… 6分

          故數(shù)列的通項為.  … ……………………………………8分

          (2)由于    由(1)得

              =  ………………………………………10分

              又

              是首項為公差為的等差數(shù)列            ……………12分

             

                  …………………………14分

          19.(本小題滿分14分)

          解:(1)如圖,設為動圓圓心, ,過點作直線的垂線,垂足為,由題意知:             ……………………………………2分

          即動點到定點與到定直線的距離相等,

          由拋物線的定義知,點的軌跡為拋物線,其中為焦點,            

          為準線, 

          ∴動圓圓心的軌跡方程為     ……………………………………5分

          (2)由題可設直線的方程為

             

             △    ………………………………………………7分

          ,,則,  ………………………9分

             由,即 ,于是,……11分

          ,

             ,解得(舍去),  …………………13分

          ,   ∴ 直線存在,其方程為       ……………14分

          20.(本小題滿分14分)

          解:(1)由已知,得,比較兩邊系數(shù),

          .      ……………………4分

             (2)令,要有三個不等的實數(shù)根,則函數(shù)

          一個極大值和一個極小值,且極大值大于0,極小值小于0.  …………5分

          由已知,得有兩個不等的實根

          ,     得.……… 6分

          ,將代入(1)(3),有,又

          ,              ………8分

          ,且處取得極大值,在處取得極小值10分      故要有三個不等的實數(shù)根,

          則必須                 ……………… 12分

            解得.                            ………………… 14分

           

           


          同步練習冊答案