日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)因為-.又... 查看更多

           

          題目列表(包括答案和解析)

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當時,求證:

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          在數(shù)學(xué)證明中,①假言推理、②三段論推理、③傳遞關(guān)系推理、④完全歸納推理,是經(jīng)常使用的四種演繹推理,下面推理過程使用到上述推理規(guī)則中的(     )如(右圖)

          因為lAB,所以又因為AB//CD,所以

           所以

          A. ①②③        B.②③④

          C. ②③          D.①②③④

           

          查看答案和解析>>

          已知,,

          (Ⅰ)求的值;

          (Ⅱ)求的值。

          【解析】第一問中,因為,∴

          第二問中原式=

          =進而得到結(jié)論。

          (Ⅰ)解:∵

          ……………………………………3

          ……………………………2

          (Ⅱ) 解:原式=  ……………………2

          =…………2

          =

           

          查看答案和解析>>

          下面是用“三段論”形式寫出的演繹推理:因為指數(shù)函數(shù)y=ax(a>0,a≠1)是減函數(shù)(大提前),又y=2x是指數(shù)函數(shù)(小前提),所以y=2x是減函數(shù)(結(jié)論),其結(jié)論錯誤的原因是(  )

          查看答案和解析>>

          請閱讀下列材料:對命題“若兩個正實數(shù)a1,a2滿足a12+a22=1,那么a1+a2
          2
          .”證明如下:構(gòu)造函數(shù)f(x)=(x-a12+(x-a22,因為對一切實數(shù)x,恒有f(x)≥0,又f(x)=2x2-2(a1+a2)x+1,從而得4(a1+a22-8≤0,所以a1+a2
          2
          .根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你可以構(gòu)造函數(shù)g(x)=
           
          ,進一步能得到的結(jié)論為
           
          .(不必證明)

          查看答案和解析>>


          同步練習(xí)冊答案