日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 1.“函數(shù)存在反函數(shù) 是“函數(shù)在R上減為函數(shù) 的 A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 查看更多

           

          題目列表(包括答案和解析)

          “函數(shù)存在反函數(shù)”是“函數(shù)R上減為函數(shù)”的(   )

             A.充分而不必要條件                                    B.必要而不充分條件           

             C.充分必要條件                                           D.既不充分也不必要條件

          查看答案和解析>>

          設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是(    )(請將你認(rèn)為正確的序號都填上)
          ①f(x)是R上的單調(diào)遞減函數(shù);
          ②對于任意x∈R,f(x)+x>0恒成立;
          ③對于任意a∈R,關(guān)于x的方程f(x)=a都有解;
          ④f(x)存在反函數(shù)f-1(x),且對于任意x∈R,總有f(x)= f-1(x)成立。

          查看答案和解析>>

          已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)求證:當(dāng)x∈R+時,恒有f(
          1
          x
          )=-f(x)
          ;
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

          查看答案和解析>>

          (2006•黃浦區(qū)二模)已知函數(shù)y=f(x)的定義域為R+,對任意x,y∈R+,有恒等式f(xy)=f(x)+f(y);且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)求證:當(dāng)x∈R+時,恒有f(
          1x
          )=-f(x)
          ;
          (3)求證:f(x)在(0,+∞)上為減函數(shù);
          (4)由上一小題知:f(x)是(0,+∞)上的減函數(shù),因而f(x)的反函數(shù)f-1(x)存在,試根據(jù)已知恒等式猜想f-1(x)具有的性質(zhì),并給出證明.

          查看答案和解析>>

          (理)已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點.若點B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.

          (1)求c的值.

          (2)在函數(shù)f(x)的圖象上是否存在一點M(x0,y0),使得f(x)在點M處的切線斜率為3b?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

          (3)求|AC|的取值范圍.

          (文)已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]單調(diào)遞增,在區(qū)間[1,2)單調(diào)遞減.

          (1)求a的值;

          (2)若點A(x0,f(x0))在函數(shù)f(x)的圖象上,求證點A關(guān)于直線x=1的對稱點B也在函數(shù)f(x)的圖象上;

          (3)是否存在實數(shù)b,使得函數(shù)g(x)=bx2-1的圖象與函數(shù)f(x)的圖象恰有3個交點,若存在,請求出實數(shù)b的值;若不存在,試說明理由.

          查看答案和解析>>

          1.B  2.D  3.A  4.A  5.A  6.B  7.B  8.B  9.C  10.C

          11.     12.4       13.2.442       14.       15.9,15

          16.(Ⅰ),∴,

          ,∴

           

          (Ⅱ)

          ,∴,

          17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為 

             (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524

             

          所以2號射箭運動員的射箭水平高.

          18.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.∴橢圓C的方程為

          (Ⅱ),設(shè)點,則

          ,∵,∴,∴的最小值為6.

          19.(Ⅰ)在梯形ABCD中,∵

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE.

          (Ⅱ)當(dāng)時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則

          ,∴∴MFAN,

          ∴四邊形ANFM是平行四邊形. ∴

          又∵平面BDF,平面BDF. ∴平面BDF.

          (Ⅲ)取EF中點G,EB中點H,連結(jié)DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

          是二面角B―EF―D的平面角.

          在△BDE中,

          又又∴在△DGH中,

          由余弦定理得即二面角B―EF―D的大小為

          20.(Ⅰ)設(shè),,

          單調(diào)遞增.

          (Ⅱ)當(dāng)時,,又,,即;

            當(dāng)時,,,由,得.

          的值域為

          (Ⅲ)當(dāng)x=0時,,∴x=0為方程的解.

          當(dāng)x>0時,,∴,∴

          當(dāng)x<0時,,∴,∴

          即看函數(shù)

          與函數(shù)圖象有兩個交點時k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,

          ,∴

          21.(Ⅰ)當(dāng)時, ,∴,令 有x=0,

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增.

          ;

          (Ⅱ)∵,∴

          為首項是1、公比為的等比數(shù)列. ∴;

          (Ⅲ)∵,由(1)知

          ,即證.

           


          同步練習(xí)冊答案