日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求證:, 查看更多

           

          題目列表(包括答案和解析)

          (Ⅰ)求證:;
          (Ⅱ)化簡(jiǎn):

          查看答案和解析>>

          (Ⅰ)求證:
          (Ⅱ)利用第(Ⅰ)問(wèn)的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
          (Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來(lái)證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

          查看答案和解析>>

          (Ⅰ)求證:
          sinx
          1-cosx
          =
          1+cosx
          sinx
          ;
          (Ⅱ)化簡(jiǎn):
          tan(3π-α)
          sin(π-α)sin(
          3
          2
          π-α)
          +
          sin(2π-α)cos(α-
          2
          )
          sin(
          2
          +α)cos(2π+α)

          查看答案和解析>>

          (Ⅰ)求證:
          C
          m
          n
          =
          n
          m
          C
          m-1
          n-1

          (Ⅱ)利用第(Ⅰ)問(wèn)的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
          (Ⅲ)其實(shí)我們常借用構(gòu)造等式,對(duì)同一個(gè)量算兩次的方法來(lái)證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
          (1+x)[1-(1+x)n]
          1-(1+x)
          =
          (1+x)n+1-(1+x)
          x
          ;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請(qǐng)利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

          查看答案和解析>>

          (Ⅰ)求證:
          sinx
          1-cosx
          =
          1+cosx
          sinx

          (Ⅱ)化簡(jiǎn):
          tan(3π-α)
          sin(π-α)sin(
          3
          2
          π-α)
          +
          sin(2π-α)cos(α-
          2
          )
          sin(
          2
          +α)cos(2π+α)

          查看答案和解析>>

          一.選擇題:ABCDC CAACB

          解析:

          1: M,P表示元素分別為直線和圓的兩個(gè)集合,它們沒(méi)有公共元素。故選A。

          2:因,取α=-代入sinα>tanα>cotα,滿足條件式,則排除A、C、D,故選B。

          3:構(gòu)造特殊函數(shù)f(x)=x,雖然滿足題設(shè)條件,并易知f(x)在區(qū)間[-7,-3]上是增函數(shù),且最大值為f(-3)=-5,故選C。

          4:題中可寫(xiě)成。聯(lián)想數(shù)學(xué)模型:過(guò)兩點(diǎn)的直線的斜率公式k=,可將問(wèn)題看成圓(x-2)2+y2=3上的點(diǎn)與坐標(biāo)原點(diǎn)O連線的斜率的最大值,即得D。

           

          5:因緯線弧長(zhǎng)>球面距離>直線距離,排除A、B、D,故選C。

           

          6:取滿足題意的特殊數(shù)列,則,故選C。

          7:二項(xiàng)式中含有,似乎增加了計(jì)算量和難度,但如果設(shè),,則待求式子。故選A。

          8:去掉題中的修飾語(yǔ),本題的實(shí)質(zhì)就是學(xué)生所熟悉的這樣一個(gè)題目:三男三女站成一排,男女相間而站,問(wèn)有多少種站法?因而易得本題答案為。故選A。

          9:考慮特殊位置PQ⊥OP時(shí),,所以,故選C。

          10:08年農(nóng)民工次性人均收入為:

          又08年農(nóng)民其它人均收入為1350+160=2150

          故08年農(nóng)民人均總收入約為2405+2150=4555(元)。故選B。

          二.填空題:11.25;    12. ;  13.  , ;14.;  15、;

          解析:11:

          12:

          13:;

          14.解:由,得

          15.解:∵PA切于點(diǎn)A,B為PO中點(diǎn),∴AB=OB=OA, ∴,∴,

          在△POD中由余弦定理 ,得=

          三.解答題:

          16.解:(Ⅰ)∵

              ∴-----------------2分

          ----------------------------4分

            

          -------------------------------------------------6分

          (Ⅱ)∵

          ----------------------------------9分

             ∴函數(shù)的最小正周期為T=π-----------------------------------------10分

          的單調(diào)增區(qū)間.----------------12分

          17.(Ⅰ)證法一:在中,是等腰直角的中位線,

                                        ……………………………1分

          在四棱錐中,,       ……………2分

          平面,                                        ……5分

          平面,                           …………7分

          證法二:同證法一                              …………2分

                                              ……………………4分

          平面,                                      ………5分

          平面,                  ……………………7分

          (Ⅱ)在直角梯形中,

          ,                     ……8分

          垂直平分,           ……10分

          三棱錐的體積為:

                          ………12分

          18.解:由題意可知,圖甲圖象經(jīng)過(guò)(1,1)和(6,2)兩點(diǎn),

          從而求得其解析式為y=0.2x+0.8-----------------------(2分)

          圖乙圖象經(jīng)過(guò)(1,30)和(6,10)兩點(diǎn),

          從而求得其解析式為y=-4x+34.------------------------- (4分)

          (Ⅰ)當(dāng)x=2時(shí),y=0.2×2+0.8 =1.2,y= -4×2+34=26,

          y?y=1.2×26=31.2.

          所以第2年魚(yú)池有26個(gè),全縣出產(chǎn)的鰻魚(yú)總數(shù)為31.2萬(wàn)只.------------ ---(6分)

           (Ⅱ)第1年出產(chǎn)魚(yú)1×30=30(萬(wàn)只), 第6年出產(chǎn)魚(yú)2×10=20(萬(wàn)只),可見(jiàn),第6年這個(gè)縣的鰻魚(yú)養(yǎng)殖業(yè)規(guī)劃比第1年縮小了----------------------------------(8分)

           (Ⅲ)設(shè)當(dāng)?shù)趍年時(shí)的規(guī)模總出產(chǎn)量為n,

          那么n=y?y=(0.2m+0.8) (-4m+34)= -0. 8m2+3.6m+27.2

                =-0.8(m2-4.5m-34)=-0.8(m-2.25)2+31.25---------------------------(11分)

          因此, .當(dāng)m=2時(shí),n最大值=31.2.

          即當(dāng)?shù)?年時(shí),鰻魚(yú)養(yǎng)殖業(yè)的規(guī)模最大,最大產(chǎn)量為31.2萬(wàn)只. --------------(14分)

          19.解:(Ⅰ) 由得: ,……(2分)

          變形得: 即:, ………(4分)

          數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列. ………(5分)

          (Ⅱ) 由(1)得:, ………(7分)

          , ………(9分)

          (Ⅲ)由(1)知:  ………(11分)

          ………(14分)

          20.解:(Ⅰ)由題意知,動(dòng)圓圓心Q到點(diǎn)A和到定直線的距離相等,

          ∴動(dòng)圓圓心Q的軌跡是以點(diǎn)A為焦點(diǎn),以直線為準(zhǔn)線的拋物線

          ∴曲線C的方程為。 -------------------------------------------------4分

          (Ⅱ)如圖,設(shè)點(diǎn),則的坐標(biāo)為,

          ,∴曲線C在點(diǎn)處的切線方程為: -----------7分

          令y=0,得此切線與x軸交點(diǎn)的橫坐標(biāo),即, , ---------10分

          ∴數(shù)列是首項(xiàng)公比為的等比數(shù)列, -----12分

           -------------14分

          21.解:(Ⅰ)令

          ……………………………………2分

          當(dāng)時(shí),    故上遞減.

          當(dāng)    故上遞增.

          所以,當(dāng)時(shí),的最小值為….……………………………………..4分

          (Ⅱ)由,有 即

          故 .………………………………………5分

          (Ⅲ)證明:要證:

          只要證:

           設(shè)…………………7分

          …………………………………………………….8分

          當(dāng)時(shí),

          上遞減,類似地可證遞增

          所以的最小值為………………10分

          =

          =

          =

          由定理知:  故

          即: .…………………………..14分


          同步練習(xí)冊(cè)答案