日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)若AB邊的長(zhǎng)為.求BC邊的長(zhǎng). 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為a的菱形,且∠BAD=60°,△PAD為正三角形,且面PAD⊥面ABCD.
          (1)求cos<
          AB
          ,
          PD
          >的值;
          (2)若E為AB的中點(diǎn),F(xiàn)為PD的中點(diǎn),求|
          EF
          |的值;
          (3)求二面角P-BC-D的大。

          查看答案和解析>>

          如圖,ABCD是邊長(zhǎng)為2的正方形,面EAD⊥面ABCD,且EA=ED,O是線段AD的中點(diǎn),過(guò)E作直線l∥AB,F(xiàn)是直線l上一動(dòng)點(diǎn).
          (1)求證:OF⊥BC;
          (2)若直線l上存在唯一一點(diǎn)F使得直線OF與平面BCF垂直,求二面角B-OF-C的余弦值.

          查看答案和解析>>

          如圖,在四邊形ABCD中,已知AD⊥CD,AD=10,AB=14,∠ADB=60°,BC=8
          2

          (1)求BD的長(zhǎng)(2)若角C為鈍角,求角C的度數(shù).

          查看答案和解析>>

          如圖,ABCD是邊長(zhǎng)為2的正方形紙片,沿某動(dòng)直線l為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點(diǎn)B都落在邊AD上,記為B';折痕與AB交于點(diǎn)E,以EB和EB’為鄰邊作平行四邊形EB’MB.若以B為原點(diǎn),BC所在直線為x軸建立直角坐標(biāo)系(如下圖):
          (Ⅰ).求點(diǎn)M的軌跡方程;
          (Ⅱ).若曲線S是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的曲線組成的,等腰梯形A1B1C1D1的三邊A1B1,B1C1,C1D1分別與曲線S切于點(diǎn)P,Q,R.求梯形A1B1C1D1面積的最小值.

          查看答案和解析>>

          如圖,ABCD是邊長(zhǎng)為2的正方形,面EAD⊥面ABCD,且EA=ED,O是線段AD的中點(diǎn),過(guò)E作直線l∥AB,F(xiàn)是直線l上一動(dòng)點(diǎn).
          (1)求證:OF⊥BC;
          (2)若直線l上存在唯一一點(diǎn)F使得直線OF與平面BCF垂直,求二面角B-OF-C的余弦值.

          查看答案和解析>>

          一、選擇題:(每題5分,共60分)

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          20080416

          二、填空題:每題5分,共20分)

          13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

          17.解:(1),

          .又.(6分)

             (2)由,

          ,.(6分)

          18.證明:(1)因?yàn)樵谡叫蜛BCD中,AC=2

            1. 可得:在△PAB中,PA2+AB2=PB2=6。

              所以PA⊥AB

              同理可證PA⊥AD

              故PA⊥平面ABCD (4分)

                 (2)取PE中點(diǎn)M,連接FM,BM,

              連接BD交AC于O,連接OE

              ∵F,M分別是PC,PF的中點(diǎn),

              ∴FM∥CE,

              又FM面AEC,CE面AEC

              ∴FM∥面AEC

              又E是DM的中點(diǎn)

              OE∥BM,OE面AEC,BM面AEC

              ∴BM∥面AEC且BM∩FM=M

              ∴平面BFM∥平面ACE

              又BF平面BFM,∴BF∥平面ACE (4分)

                 (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

              SㄓACD=1,

                  ∴VFACD=VF――ACD=  (4分)

              19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

              設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

              消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

                 (2)有方程組得公共弦的方程:

              圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

              ∴弦長(zhǎng)l=(定值)               (5分)

              20.解:(1)

              當(dāng)時(shí),取最小值

              .(6分)

                 (2)令,

              ,(不合題意,舍去).

              當(dāng)變化時(shí)的變化情況如下表:

              遞增

              極大值

              遞減

              內(nèi)有最大值

              內(nèi)恒成立等價(jià)于內(nèi)恒成立,

              即等價(jià)于,

              所以的取值范圍為.(6分)

              21.解:(1),

              ,

              數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

              當(dāng)時(shí),,

                   (6分)

                 (2),

              當(dāng)時(shí),;

              當(dāng)時(shí),,…………①

              ,………………………②

              得:

              也滿足上式,

              .(6分)

              22.解:(1)由題意橢圓的離心率

                      

              ∴橢圓方程為……2分

              又點(diǎn)在橢圓上

                       ∴橢圓的方程為(4分)

              (2)設(shè)

              消去并整理得……6分

              ∵直線與橢圓有兩個(gè)交點(diǎn)

              ,即……8分

              中點(diǎn)的坐標(biāo)為……10分

              設(shè)的垂直平分線方程:

              ……12分

              將上式代入得

                 即 

              的取值范圍為…………(8分)