日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)設(shè).求的前n項(xiàng)和. 答案:一. CBCAB ACCAB二. 查看更多

           

          題目列表(包括答案和解析)

          (2012•北京模擬)在數(shù)列{an}中,a1=
          3
          an+1=
          1+
          a
          2
          n
          -1
          an
          (n∈N*)
          .?dāng)?shù)列{bn}滿足0<bn
          π
          2
          ,且 an=tanbn(n∈N*).
          (1)求b1,b2的值;
          (2)求數(shù)列{bn}的通項(xiàng)公式;
          (3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.若對于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求實(shí)數(shù)λ的取值范圍.

          查看答案和解析>>

          (2012•浦東新區(qū)一模)定義數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
          (1)設(shè)an=2n-1,bn=(-
          12
          )n
          ,n∈N*,判斷{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
          (2)設(shè)數(shù)列{cn}為“p-擺動數(shù)列”,c1>p,求證:對任意正整數(shù)m,n∈N*,總有c2n<c2m-1成立;
          (3)設(shè)數(shù)列{dn}的前n項(xiàng)和為Sn,且Sn=(-1)n•n,試問:數(shù)列{dn}是否為“p-擺動數(shù)列”,若是,求出p的取值范圍;若不是,說明理由.

          查看答案和解析>>

          19、已知數(shù)列{an},其前n項(xiàng)和Sn滿足Sn+1=2λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
          (1)求λ的值;
          (2)求數(shù)列{an}的通項(xiàng)公式an
          (3)設(shè)數(shù)列{nan}的前n項(xiàng)和為Tn,求Tn

          查看答案和解析>>

          設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對任意的正整數(shù)n,都有an=5Sn+1成立,記bn=
          4+an
          1-an
           (n∈N*)
          (1)求數(shù)列{an}與數(shù)列{bn}的通項(xiàng)公式;
          (2)記cn=b2n-b2n-1 (n∈N*),設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求證:對任意正整數(shù)n都有Tn
          3
          2
          ;
          (3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Rn,是否存在正整數(shù)k,使得Rk≥4k成立?若存在,找出一個(gè)正整數(shù)k;若不存在,請說明理由.

          查看答案和解析>>

          在單調(diào)遞增數(shù)列{an}中,a1=1,a2=2,且a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列,n=1,2,3,….
          (1)分別計(jì)算a3,a5和a4,a6的值;
          (2)求數(shù)列{an}的通項(xiàng)公式(將an用n表示);
          (3)設(shè)數(shù)列{
          1
          an
          }
          的前n項(xiàng)和為Sn,證明:Sn
          4n
          n+2
          ,n∈N*

          查看答案和解析>>


          同步練習(xí)冊答案