日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)因為所以函數(shù)在區(qū)間上單調(diào)遞增.要使在上單調(diào)遞增.當且僅當即 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)

          (I)求的單調(diào)區(qū)間;

          (II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.

          【解析】第一問定義域為真數(shù)大于零,得到.                            

          ,則,所以,得到結(jié)論。

          第二問中, ().

          .                          

          因為0<a<2,所以,.令 可得

          對參數(shù)討論的得到最值。

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          (I)定義域為.           ………………………1分

          .                            

          ,則,所以.  ……………………3分          

          因為定義域為,所以.                            

          ,則,所以

          因為定義域為,所以.          ………………………5分

          所以函數(shù)的單調(diào)遞增區(qū)間為,

          單調(diào)遞減區(qū)間為.                         ………………………7分

          (II) ().

          .                          

          因為0<a<2,所以,.令 可得.…………9分

          所以函數(shù)上為減函數(shù),在上為增函數(shù).

          ①當,即時,            

          在區(qū)間上,上為減函數(shù),在上為增函數(shù).

          所以.         ………………………10分  

          ②當,即時,在區(qū)間上為減函數(shù).

          所以.               

          綜上所述,當時,;

          時,

           

          查看答案和解析>>

          設(shè)函數(shù)

          (Ⅰ) 當時,求的單調(diào)區(qū)間;

          (Ⅱ) 若上的最大值為,求的值.

          【解析】第一問中利用函數(shù)的定義域為(0,2),.

          當a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

          第二問中,利用當時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

          解:函數(shù)的定義域為(0,2),.

          (1)當時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

          (2)當時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

           

          查看答案和解析>>

          如圖,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

          (1)寫出之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對所有恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用有得到

          第二問證明:①當時,可求得,命題成立;②假設(shè)當時,命題成立,即有則當時,由歸納假設(shè)及,

          第三問 

          .………………………2分

          因為函數(shù)在區(qū)間上單調(diào)遞增,所以當時,最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當時,可求得,命題成立; ……………2分

          ②假設(shè)當時,命題成立,即有,……………………1分

          則當時,由歸納假設(shè)及

          解得不合題意,舍去)

          即當時,命題成立.  …………………………………………4分

          綜上所述,對所有.    ……………………………1分

          (3) 

          .………………………2分

          因為函數(shù)在區(qū)間上單調(diào)遞增,所以當時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>


          同步練習冊答案