日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以線段中點的坐標為, 查看更多

           

          題目列表(包括答案和解析)

          坐標空間中,考慮球面S:(x-1)2+(y-2)2+(z-3)2=14與A(1,0,0),B(-1,0,0)兩點.請問下列哪些選項是正確的?
          (1)原點在球面S上    (2)A點在球面S之外部    (3)線段
          .
          AB
          與球面S相交   (4)A點為直線AB上距離球心最近的點   (5)球面S和xy,yz,xz平面分別截出的三個圓中,以與xy平面所截的圓面積為最大.

          查看答案和解析>>

          坐標空間中,考慮球面S:(x-1)2+(y-2)2+(z-3)2=14與A(1,0,0),B(-1,0,0)兩點.請問下列哪些選項是正確的?
          (1)原點在球面S上    (2)A點在球面S之外部    (3)線段與球面S相交   (4)A點為直線AB上距離球心最近的點   (5)球面S和xy,yz,xz平面分別截出的三個圓中,以與xy平面所截的圓面積為最大.

          查看答案和解析>>

          已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
          3
          3
          )
          ,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
          (Ⅰ)求雙曲線C的方程;
          (Ⅱ)命題:“過橢圓
          x2
          25
          +
          y2
          16
          =1
          的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
          |AB|
          |FM|
          為定值,且定值是
          10
          3
          ”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
          (Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

          查看答案和解析>>

          已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
          (Ⅰ)求雙曲線C的方程;
          (Ⅱ)命題:“過橢圓的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則為定值,且定值是”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
          (Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

          查看答案和解析>>

          已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
          (Ⅰ)求雙曲線C的方程;
          (Ⅱ)命題:“過橢圓的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則為定值,且定值是”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
          (Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

          查看答案和解析>>


          同步練習冊答案