日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)時..S是y的減函數(shù) 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
          (1)當(dāng)x≥0時,曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
          (2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
          (3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個數(shù),并作出證明.

          查看答案和解析>>

          已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
          (1)當(dāng)x≥0時,曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
          (2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
          (3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個數(shù),并作出證明.

          查看答案和解析>>

          已知函數(shù)f(x)滿足f(x)+(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).

          ①當(dāng)x≥0時,曲線y=f(x)在點(diǎn)M(t,f(t))的切線l與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;

          ②若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;

          ③設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個數(shù),并作出證明.

          查看答案和解析>>

          已知函數(shù)f(x)滿足f(x)+(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).

          (1)當(dāng)x≥0時,曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;

          (2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;

          (3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個數(shù),并作出證明.

          查看答案和解析>>

          (理)已知函數(shù)f(x)=xlnx.

          (1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;

          (2)當(dāng)b>0時,求證:bb(其中e=2.718 28…是自然對數(shù)的底數(shù));

          (3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

          (文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

          (1)求和c的值.

          (2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).

          (3)當(dāng)a=2時,設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

          查看答案和解析>>

           

          1.(1)因?yàn)?sub>,所以

                又是圓O的直徑,所以

                又因?yàn)?sub>(弦切角等于同弧所對圓周角)

                所以所以

                又因?yàn)?sub>,所以相似

                所以,即

            (2)因?yàn)?sub>,所以,

                 因?yàn)?sub>,所以

                 由(1)知:。所以

                 所以,即圓的直徑

                 又因?yàn)?sub>,即

               解得

          2.依題設(shè)有:

           令,則

           

           

          3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題

            點(diǎn)的直角坐標(biāo)分別為

            故是以為斜邊的等腰直角三角形,

            進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

                ,即

            將代入上述方程,得

            ,即

          4.假設(shè),因?yàn)?sub>,所以。

          又由,則,

          所以,這與題設(shè)矛盾

          又若,這與矛盾

          綜上可知,必有成立

          同理可證也成立

          命題成立

          5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

          1°.當(dāng)n=1時,命題顯然成立;

          2°.假設(shè)當(dāng)n=k(kN*)時,命題成立,

          即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

          則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

          =( k+1)(k+1+1)(k+1+2)(k+1+3)

          即命題對n=k+1.成立

          由1°, 2°,命題對任意的正整數(shù)n成立.

          6.(1)因?yàn)?sub>,

                ,所以

                 故事件A與B不獨(dú)立。

             (2)因?yàn)?sub>

                

                 所以

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊答案