日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當時..S是y的增函數(shù) 查看更多

           

          題目列表(包括答案和解析)

          設(shè)三次函數(shù)在x=1處取得極值,其圖象在x=m處的切線的斜率為-3a.

          (1)求證:

          (2)若函數(shù)y=f(x)在區(qū)間[s,t]上單調(diào)遞增,求的取值范圍;

          (3)問是否存在實數(shù)k(k是與a,b,c,d無關(guān)的常數(shù)),當x≥k時,恒有恒成立?若存在,試求出k的最小值;若不存在,請說明理由.

          查看答案和解析>>

          設(shè)三次函數(shù)f(x)=ax3+bx2+cx+d(a<b<c),在x=1處取得極值,其圖象在x=m處的切線的斜率為-3a.

          (Ⅰ)求證:;

          (Ⅱ)若函數(shù)y=f(x)在區(qū)間[s,t]上單調(diào)遞增,求|s-t|的取值范圍;

          (Ⅲ)問是否存在實數(shù)k(k是與a,b,c,d無關(guān)的常數(shù)),當x≥k時,恒有恒成立?若存在,試求出k的最小值;若不存在,請說明理由.

          查看答案和解析>>

          設(shè)三次函數(shù)f(x)=ax3+bx2+cx+d(a<b<c),在x=1處取得極值,其圖像在x=m處的切線的斜率為-3a.

          (1)求證:;

          (2)若函數(shù)y=f(x)在區(qū)間[s,t]上單調(diào)遞增,求|s-t|的取值范圍;

          (3)問是否存在實數(shù)k(k是與a,b,c,d無關(guān)的常數(shù)),當x≥k時,恒有恒成立?若存在,試求出k的最小值;若不存在,請說明理由.

          查看答案和解析>>

          12、定義在R上的函數(shù)y=f(x)是增函數(shù),且為奇函數(shù),若實數(shù)s,t滿足不等式f(s2-2s)≥-f(2t-t2),則當1≤s≤4時,3t+s的取值范圍是( 。

          查看答案和解析>>

          12、定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-3)的圖象關(guān)于(3,0)成中心對稱,若s,t滿足不等式f(s2-2s)≥-f(2t-t2),則當1≤s≤4時,3t+s的取值范圍是( 。

          查看答案和解析>>

           

          1.(1)因為,所以

                又是圓O的直徑,所以

                又因為(弦切角等于同弧所對圓周角)

                所以所以

                又因為,所以相似

                所以,即

            (2)因為,所以

                 因為,所以

                 由(1)知:。所以

                 所以,即圓的直徑

                 又因為,即

               解得

          2.依題設(shè)有:

           令,則

           

           

          3.將極坐標系內(nèi)的問題轉(zhuǎn)化為直角坐標系內(nèi)的問題

            點的直角坐標分別為

            故是以為斜邊的等腰直角三角形,

            進而易知圓心為,半徑為,圓的直角坐標方程為

                ,即

            將代入上述方程,得

            ,即

          4.假設(shè),因為,所以

          又由,則,

          所以,這與題設(shè)矛盾

          又若,這與矛盾

          綜上可知,必有成立

          同理可證也成立

          命題成立

          5. 解:由a1=S1,k=.下面用數(shù)學歸納法進行證明.

          1°.當n=1時,命題顯然成立;

          2°.假設(shè)當n=k(kN*)時,命題成立,

          即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

          則n=k+1時,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

          =( k+1)(k+1+1)(k+1+2)(k+1+3)

          即命題對n=k+1.成立

          由1°, 2°,命題對任意的正整數(shù)n成立.

          6.(1)因為,

                ,所以

                 故事件A與B不獨立。

             (2)因為

                

                 所以

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習冊答案