日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑵由⑴知. 于是F(-a.0) Q. 查看更多

           

          題目列表(包括答案和解析)

          已知二次函數(shù)f(x)=ax2+(a+1)xa,方程f(x)=0兩實(shí)根的差的絕對(duì)值等于2.

          (Ⅰ)求實(shí)數(shù)a的值.

          (Ⅱ)是否存在實(shí)數(shù)p、q,使得函數(shù)F(x)=pf[f(x)]+q f(x),在區(qū)間(-∞,-3)內(nèi)是增函數(shù),在區(qū)間(-3,0)內(nèi)是減函數(shù)?若存在,求p、q所要滿足的條件;若不存在,說明理由.

           

          查看答案和解析>>

          已知二次函數(shù)f(x)=ax2+(a+1)xa,方程f(x)=0兩實(shí)根的差的絕對(duì)值等于2.

          (Ⅰ)求實(shí)數(shù)a的值.

          (Ⅱ)是否存在實(shí)數(shù)p、q,使得函數(shù)F(x)=pf[f(x)]+q f(x),在區(qū)間(-∞,-3)內(nèi)是增函數(shù),在區(qū)間(-3,0)內(nèi)是減函數(shù)?若存在,求p、q所要滿足的條件;若不存在,說明理由.

           

          查看答案和解析>>

          (本小題滿分13分)(第一問8分,第二問5分)

          已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

          (1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)PQ處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

          (2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

           

          查看答案和解析>>

          (本小題滿分13分)(第一問8分,第二問5分)
          已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
          (1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)PQ處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
          (2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分13分)(第一問8分,第二問5分)
          已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
          (1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
          (2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

          查看答案和解析>>

           

          1.(1)因?yàn)?sub>,所以

                又是圓O的直徑,所以

                又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)

                所以所以

                又因?yàn)?sub>,所以相似

                所以,即

            (2)因?yàn)?sub>,所以

                 因?yàn)?sub>,所以

                 由(1)知:。所以

                 所以,即圓的直徑

                 又因?yàn)?sub>,即

               解得

          2.依題設(shè)有:

           令,則

           

           

          3.將極坐標(biāo)系內(nèi)的問題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問題

            點(diǎn)的直角坐標(biāo)分別為

            故是以為斜邊的等腰直角三角形,

            進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

                ,即

            將代入上述方程,得

            ,即

          4.假設(shè),因?yàn)?sub>,所以。

          又由,則,

          所以,這與題設(shè)矛盾

          又若,這與矛盾

          綜上可知,必有成立

          同理可證也成立

          命題成立

          5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

          1°.當(dāng)n=1時(shí),命題顯然成立;

          2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,

          即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

          則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

          =( k+1)(k+1+1)(k+1+2)(k+1+3)

          即命題對(duì)n=k+1.成立

          由1°, 2°,命題對(duì)任意的正整數(shù)n成立.

          6.(1)因?yàn)?sub>

                ,所以

                 故事件A與B不獨(dú)立。

             (2)因?yàn)?sub>

                

                 所以

           

           

           

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案