日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)當(dāng)時..由得單增區(qū)間為:, 查看更多

           

          題目列表(包括答案和解析)

          (12分)已知函數(shù),

          (1)當(dāng)時,求的反函數(shù);

          (2)求關(guān)于的函數(shù) 當(dāng)時的最小值;

          (3)我們把同時滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)”:①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);②在函數(shù)的定義域內(nèi)存在區(qū)間使得函數(shù)在區(qū)間上的值域為.

          (Ⅰ)判斷(2)中是否為“和諧函數(shù)”?若是,求出的值或關(guān)系式;若不是,請說明理由;

          (Ⅱ)若關(guān)于的函數(shù)是“和諧函數(shù)”,求實數(shù)的取值范圍.

           

          查看答案和解析>>

          (12分)已知函數(shù),
          (1)當(dāng)時,求的反函數(shù);
          (2)求關(guān)于的函數(shù)當(dāng)時的最小值
          (3)我們把同時滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)”:①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);②在函數(shù)的定義域內(nèi)存在區(qū)間使得函數(shù)在區(qū)間上的值域為.
          (Ⅰ)判斷(2)中是否為“和諧函數(shù)”?若是,求出的值或關(guān)系式;若不是,請說明理由;
          (Ⅱ)若關(guān)于的函數(shù)是“和諧函數(shù)”,求實數(shù)的取值范圍.

          查看答案和解析>>

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當(dāng)時,,故. …………5分

          所以.                 …………6分

          (2)令,定義域為

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點,,

          當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          當(dāng),即時,同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足,

          由此求得的范圍是.        …………13分

          綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)

          (I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

          (II)當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍.

          (Ⅲ)求證:解:(1),其定義域為,則

          ,

          當(dāng)時,;當(dāng)時,

          在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

          即當(dāng)時,函數(shù)取得極大值.                                       (3分)

          函數(shù)在區(qū)間上存在極值,

           ,解得                                            (4分)

          (2)不等式,即

          (6分)

          ,則,

          ,即上單調(diào)遞增,                          (7分)

          ,從而,故上單調(diào)遞增,       (7分)

                    (8分)

          (3)由(2)知,當(dāng)時,恒成立,即,

          ,則,                               (9分)

                                                                                 (10分)

          以上各式相加得,

          ,

                                     

                                                  (12分)

          。

           

          查看答案和解析>>

          已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時取得極小值.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對稱,并證明你的結(jié)論;
          *(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個不同實根的實數(shù)λ的取值范圍為集合A,且兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+2≤|x1-x2|對任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案