題目列表(包括答案和解析)
如圖,,
,…,
,…是曲線
上的點(diǎn),
,
,…,
,…是
軸正半軸上的點(diǎn),且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標(biāo)原點(diǎn)).
(1)寫出、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:(
);
(3)設(shè),對(duì)所有
,
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用有,
得到
第二問(wèn)證明:①當(dāng)時(shí),可求得
,命題成立;②假設(shè)當(dāng)
時(shí),命題成立,即有
則當(dāng)
時(shí),由歸納假設(shè)及
,
得
第三問(wèn)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當(dāng)時(shí),可求得
,命題成立;
……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有
,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及
,
得.
即
解得(
不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對(duì)所有,
. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間
上單調(diào)遞增,所以當(dāng)
時(shí),
最大為
,即
.……………2分
由題意,有.
所以,
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間
上的最小值;
(3)已知,命題p:關(guān)于x的不等式
對(duì)函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【解析】第一問(wèn)中,利用由 即
第二問(wèn)中,,
得:
,
第三問(wèn)中,由在函數(shù)的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。
解:(1)由 即
(2),
得:
,
(3)由在函數(shù)的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí),
當(dāng)命題p為假,命題q為真時(shí),,
所以
在數(shù)列中,
,其中
,對(duì)任意
都有:
;(1)求數(shù)列
的第2項(xiàng)和第3項(xiàng);
(2)求數(shù)列的通項(xiàng)公式
,假設(shè)
,試求數(shù)列
的前
項(xiàng)和
;
(3)若對(duì)一切
恒成立,求
的取值范圍。
【解析】第一問(wèn)中利用)同理得到
第二問(wèn)中,由題意得到:
累加法得到
第三問(wèn)中,利用恒成立,轉(zhuǎn)化為最小值大于等于即可。得到范圍。
(1)同理得到
……2分
(2)由題意得到:
又
……5分
……8分
(3)
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式
;
(2)若不等式對(duì)任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為
,
由題意可知,即
,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價(jià)于,
當(dāng)時(shí),
;當(dāng)
時(shí),
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對(duì)任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時(shí),
,成立.
假設(shè)當(dāng)時(shí),不等式
成立,
當(dāng)時(shí),
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對(duì)任意
,不等式
恒成立.…14分
方法二:?jiǎn)握{(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式
, …………10分
, …………12分
所以對(duì),都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com