日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴直線B1B的方程為 ② 查看更多

           

          題目列表(包括答案和解析)

          已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0,F(xiàn)0,F(xiàn)1,F(xiàn)2是對(duì)應(yīng)的焦點(diǎn).

          (1)若三角形F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;

          (2)若|A1A|>|B1B|,求的取值范圍;

          (3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說明理由.

          查看答案和解析>>

          已知半橢圓數(shù)學(xué)公式與半橢圓數(shù)學(xué)公式組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
          (1)若三角形F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
          (2)若|A1A|>|B1B|,求數(shù)學(xué)公式的取值范圍;
          (3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說明理由.

          查看答案和解析>>

          已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+
          c2,a>0,b>c>0。如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
          (1)若三角形F0F1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
          (2)若|A1A|>|B1B|,求的取值范圍;
          (3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦。是否存在實(shí)數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說明理由。

          查看答案和解析>>

          已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
          (1)若三角形FF1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
          (2)若|A1A|>|B1B|,求的取值范圍;
          (3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說明理由.

          查看答案和解析>>

          已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設(shè)點(diǎn)F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),
          (1)若三角形FF1F2是邊長(zhǎng)為1的等邊三角形,求“果圓”的方程;
          (2)若|A1A|>|B1B|,求的取值范圍;
          (3)一條直線與果圓交于兩點(diǎn),兩點(diǎn)的連線段稱為果圓的弦.是否存在實(shí)數(shù)k,使得斜率為k的直線交果圓于兩點(diǎn),得到的弦的中點(diǎn)的軌跡方程落在某個(gè)橢圓上?若存在,求出所有k的值;若不存在,說明理由.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案