日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又.所以.從而.------5分 查看更多

           

          題目列表(包括答案和解析)

          從以下兩個小題中選做一題(只能做其中一個,做兩個按得分最低的記分).(甲)一水池有2個進(jìn)水口,1個出水口,每口進(jìn)出水速度如圖甲、乙所示.某天0點到6點,該水池的蓄水量如圖丙所示.(至少打開一個水口)

          給出以下3個論斷:①0點到3點只進(jìn)水不出水;②3點到4點不進(jìn)水只出水;③4點到6點不進(jìn)水不出水.則一定能確定正確的論斷序號是________.

          (乙)深圳市的一種特色水果上市時間僅能持續(xù)5個月,預(yù)測上市初期和后期會因供不應(yīng)求使價格呈連續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,現(xiàn)有三種價格模擬函數(shù).①f(x)p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p

          (以上三式中p,q均為常數(shù),且q>1,x=0表示4月1日,x=1表示5月1日,依次類推).

          (1)為準(zhǔn)確研究其價格走勢,應(yīng)選________種價格模擬函數(shù).

          (2)若f(x)=4,f(2)=6,預(yù)測該果品在________月份內(nèi)價格下跌.

          查看答案和解析>>

          解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數(shù)的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

          某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機(jī)場到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機(jī)一次接送旅客的行車路程ξ是一個隨機(jī)變量,

          (1)他收旅客的租車費η是否也是一個隨機(jī)變量?如果是,找出租車費η與行車路程ξ的關(guān)系式;

          (2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車?yán)塾嬜疃鄮追昼?這種情況下,停車?yán)塾嫊r間是否也是一個隨機(jī)變量?

          查看答案和解析>>

          已知正項數(shù)列的前n項和滿足:,

          (1)求數(shù)列的通項和前n項和

          (2)求數(shù)列的前n項和;

          (3)證明:不等式  對任意的都成立.

          【解析】第一問中,由于所以

          兩式作差,然后得到

          從而得到結(jié)論

          第二問中,利用裂項求和的思想得到結(jié)論。

          第三問中,

                 

          結(jié)合放縮法得到。

          解:(1)∵     ∴

                ∴

                ∴   ∴  ………2分

                又∵正項數(shù)列,∴           ∴ 

          又n=1時,

             ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分

                                       …………………4分

                             …………………5分 

          (2)       …………………6分

              ∴

                                    …………………9分

          (3)

                …………………12分

                  ,

             ∴不等式  對任意的都成立.

           

          查看答案和解析>>


          同步練習(xí)冊答案