日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ② 假設時猜想成立.即成立. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),數(shù)列的項滿足: ,(1)試求

          (2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.

          【解析】第一問中,利用遞推關系,

          ,   

          第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。

          解: (1) ,

          ,    …………….7分

          (2)由(1)猜想得:

          (數(shù)學歸納法證明)i) ,  ,命題成立

          ii) 假設時,成立

          時,

                                        

          綜合i),ii) : 成立

           

          查看答案和解析>>

          在數(shù)列中,

          (Ⅰ)求、、并推測;

          (Ⅱ)用數(shù)學歸納法證明你的結論.

          【解析】第一問利用遞推關系可知,、、,猜想可得

          第二問中,①當時,=,又,猜想正確

          ②假設當時猜想成立,即,

          時,

          =

          =,即當時猜想也成立

          兩步驟得到。

          (2)①當時,=,又,猜想正確

          ②假設當時猜想成立,即

          時,

          =

          =,即當時猜想也成立

          由①②可知,對于任何正整數(shù)都有成立

           

          查看答案和解析>>

          已知,(其中

          ⑴求;

          ⑵試比較的大小,并說明理由.

          【解析】第一問中取,則;                         …………1分

          對等式兩邊求導,得

          ,則得到結論

          第二問中,要比較的大小,即比較:的大小,歸納猜想可得結論當時,;

          時,;

          時,;

          猜想:當時,運用數(shù)學歸納法證明即可。

          解:⑴取,則;                         …………1分

          對等式兩邊求導,得,

          ,則。       …………4分

          ⑵要比較的大小,即比較:的大小,

          時,;

          時,

          時,;                              …………6分

          猜想:當時,,下面用數(shù)學歸納法證明:

          由上述過程可知,時結論成立,

          假設當時結論成立,即,

          時,

          時結論也成立,

          ∴當時,成立。                          …………11分

          綜上得,當時,;

          時,;

          時, 

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設數(shù)列公差為,

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于,

          時,;當時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學歸納法.

          時,,成立.

          假設當時,不等式成立,

          時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調性證明.

          要證 

          只要證  ,  

          設數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>


          同步練習冊答案