日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 12.如圖.F為橢圓的焦點.橢圓上的點Mi與M7-i(i=1.2.3)關(guān)于x軸對稱.則|M1F|+|M2F|+-+|M6F|= . 查看更多

           

          題目列表(包括答案和解析)

          如圖,F(xiàn)為橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點,P為橢圓上一點,O為原點,記△OFP的面積為S,且
          OF
          FP
          =1

          (1)設(shè)
          1
          2
          <S<
          3
          2
          ,求向量
          OF
          FP
          夾角的取值范圍.
          (2)設(shè)|
          OF
          |=c
          ,S=
          3
          4
          c
          ,當c≥2時,求當|
          OP
          |
          取最小值時的橢圓方程.

          查看答案和解析>>

          如圖,F(xiàn)為橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的右焦點,P為橢圓上一點,O為原點,記△OFP的面積為S,且
          OF
          FP
          =1

          (1)設(shè)
          1
          2
          <S<
          3
          2
          ,求向量
          OF
          FP
          夾角的取值范圍.
          (2)設(shè)|
          OF
          |=c
          ,S=
          3
          4
          c
          ,當c≥2時,求當|
          OP
          |
          取最小值時的橢圓方程.
          精英家教網(wǎng)

          查看答案和解析>>

          如圖,F(xiàn)是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設(shè)P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.

          (1)求橢圓和圓的標準方程;

          (2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

           

          查看答案和解析>>

          如圖,已知橢圓的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
          (2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
          (3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          如圖,F(xiàn)是橢圓的右焦點,以點F為圓心的圓過原點O和橢圓的右頂點,設(shè)P是橢圓上的動點,P到橢圓兩焦點的距離之和等于4.

          (1)求橢圓和圓的標準方程;
          (2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

           

          1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

          11.80    12.30    13.c    14.   15. .

          三、解答題

          16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

          a?b=  當k=1時取等號.                                (6分)

             (2)a?b=

                 

                  ∴時,a?b=取最大值1.                                                               (12分)

          17.解:(1)由已知有xn+1-1=2(xn-1)

          ∴{xn-1}是以1為首項以2為公比的等比數(shù)列,又x1=2.

          xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

             (2)由

          又當nN*時,xn≥2故點(xn,yn)在射線x+y=3(xn≥2)上。                (12分)

          18.解:(1)記乙勝為事件A,則PA)=

            1.    (2)解法一:由題意:(x,y)=(1,4)或(1,3)

              或(1,2)或(1,1)或(2,3)或(2,2)

              或(2,1)或(3,2)或(3,1)或(4,1)。

              故當x=1,y=4時,x+2y取最大值9,即x=1,

              y=4時乙獲勝的概率最大為.(12分)

              解法二:令t=x+2y,,(x,y)取值如圖所示,由

              線性規(guī)劃知識知x=1,y=4時,t最大,

              x=1,y=4,乙獲勝的概率最大為.                                                   (12分)

              19.解(1)設(shè)正三棱柱的側(cè)棱長為.取中點,連

              是正三角形,

              又底面側(cè)面,且交線為

              側(cè)面.……3分

              ,則直線與側(cè)面所成的角為

              中,,解得

              此正三棱柱的側(cè)棱長為.                       ……5分

              (2)過,連,

              側(cè)面為二面角的平面角.…7分

              中,,

              ,

              中,

              故二面角的大小為.         ……9分

              (3)解法1:由(2)可知,平面,平面平面,且交線為,

              ,則平面.……11分

              中,

              中點,到平面的距離為.  ………… 13

              20.解:

               

              21.解:(1)

              ,故橢圓Qn的焦距2cn≥1.                                                            (4分)

                 (2)(i)設(shè)Pn(xn,yn),則

                      

               

               

               

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>