日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∵ . ∴ . 故是公比為2的等比數(shù)列 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

          (1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

          (2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列,試寫(xiě)出數(shù)列的通項(xiàng)公式;

          (3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)中解:由,,

          又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

          ,所以p=1

          故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

          此時(shí)也滿足,則所求常數(shù)的值為1且

          第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:

          (i)當(dāng)時(shí),;

          (ii) 當(dāng)時(shí),,

          所以

          第三問(wèn)假設(shè)存在正整數(shù)n滿足條件,則,

          則(i)當(dāng)時(shí),

          ,

           

          查看答案和解析>>

          已知是等差數(shù)列,其前n項(xiàng)和為Sn是等比數(shù)列,且.

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)記,,證明).

          【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

          ,得,,.

          由條件,得方程組,解得

          所以,.

          (2)證明:(方法一)

          由(1)得

               ①

             ②

          由②-①得

          ,

          (方法二:數(shù)學(xué)歸納法)

          ①  當(dāng)n=1時(shí),,,故等式成立.

          ②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

             

             

          ,因此n=k+1時(shí)等式也成立

          由①和②,可知對(duì)任意,成立.

           

          查看答案和解析>>

           [番茄花園1] 本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分。

          已知數(shù)列的前項(xiàng)和為,且,

          (1)證明:是等比數(shù)列;

          (2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說(shuō)明理由。

          同理可得,當(dāng)n≤15時(shí),數(shù)列{Sn}單調(diào)遞減;故當(dāng)n=15時(shí),Sn取得最小值.

           


           [番茄花園1]20.

          查看答案和解析>>

          已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

          (1)求函數(shù)f(x)的表達(dá)式;

          (2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

          (3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

          【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

          由f(x)=2x只有一解,即=2x,

          也就是2ax2-2(1+b)x=0(a≠0)只有一解,

          ∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

          (2)an+1=f(an)=(n∈N*),bn-1, ∴,

          ∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=

          bn=b1qn-1n-1n(n∈N*).……………………………9分

          (3)證明:∵anbn=an=1-an=1-,

          ∴a1b1+a2b2+…+anbn+…+<+…+

          =1-<1(n∈N*).

           

          查看答案和解析>>

          閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項(xiàng)an
          解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
          an+1=3(an-1+1),因此數(shù)列{an+1}是首項(xiàng)為a1+1,公比為3的等比數(shù)列.
          根據(jù)上述材料所給出提示,解答下列問(wèn)題:
          已知數(shù)列{an},a1=1,an=3an-1+4,
          (1)求數(shù)列的通項(xiàng)an;并用解析幾何中的有關(guān)思想方法來(lái)解釋其原理;
          (2)若記Sn=
          n
          k=1
          1
          lg(ak+2)lg(ak+1+2)
          ,求
          lim
          n→∞
          Sn;
          (3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學(xué)過(guò)的知識(shí),把問(wèn)題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有 一項(xiàng)是符合題目要求的。

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

           

           

           

           

           

           

           

           

           

           

          二、填空題:(本大題共5個(gè)小題,每小題5分,共25分,)

          11.    12.     13.    14.       15.

           

          三、解答題:


          同步練習(xí)冊(cè)答案