日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 不妨設(shè).則.. 查看更多

           

          題目列表(包括答案和解析)

          函數(shù)y=ax3+bx2+cx+d(a≠0)的導(dǎo)函數(shù)為y=3ax2+2bx+c,不妨把方程y=3ax2+2bx+c=0稱(chēng)為導(dǎo)方程,其判別式△=4(b2-3ac),若△>0,設(shè)其兩根為x1,x2,則當(dāng)a<0,△≤0時(shí),三次函數(shù)的圖象是( 。

          查看答案和解析>>

          已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱(chēng)為函數(shù)f(x)的不動(dòng)點(diǎn);若a1∈D,an+1=f(an)(n∈N*),則稱(chēng){an} 為由函數(shù)f(x)導(dǎo)出的數(shù)列.
          設(shè)函數(shù)g(x)=
          4x+2
          x+3
          ,h(x)=
          ax+b
          cx+d
          (c≠0,ad-bc≠0,(d-a)2+4bc>0)

          (1)求函數(shù)g(x)的不動(dòng)點(diǎn)x1,x2
          (2)設(shè)a1=3,{an} 是由函數(shù)g(x)導(dǎo)出的數(shù)列,對(duì)(1)中的兩個(gè)不動(dòng)點(diǎn)x1,x2(不妨設(shè)x1<x2),數(shù)列求證{
          an-x1
          an-x2
          }
          是等比數(shù)列,并求
          lim
          n→∞
          an
          ;
          (3)試探究由函數(shù)h(x)導(dǎo)出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
          注:已知數(shù)列{bn},若存在正整數(shù)T,對(duì)一切n∈N*都有bn+T=bn,則稱(chēng)數(shù)列{bn} 為周期數(shù)列,T是它的一個(gè)周期.

          查看答案和解析>>

          已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱(chēng)為函數(shù)f(x)的不動(dòng)點(diǎn);若a1∈D,an+1=f(an)(n∈N*),則稱(chēng){an} 為由函數(shù)f(x)導(dǎo)出的數(shù)列.
          設(shè)函數(shù)g(x)=數(shù)學(xué)公式,h(x)=數(shù)學(xué)公式
          (1)求函數(shù)g(x)的不動(dòng)點(diǎn)x1,x2;
          (2)設(shè)a1=3,{an} 是由函數(shù)g(x)導(dǎo)出的數(shù)列,對(duì)(1)中的兩個(gè)不動(dòng)點(diǎn)x1,x2(不妨設(shè)x1<x2),數(shù)列求證數(shù)學(xué)公式是等比數(shù)列,并求數(shù)學(xué)公式;
          (3)試探究由函數(shù)h(x)導(dǎo)出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
          注:已知數(shù)列{bn},若存在正整數(shù)T,對(duì)一切n∈N*都有bn+T=bn,則稱(chēng)數(shù)列{bn} 為周期數(shù)列,T是它的一個(gè)周期.

          查看答案和解析>>

          已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱(chēng)為函數(shù)f(x)的不動(dòng)點(diǎn);若a1∈D,an+1=f(an)(n∈N*),則稱(chēng){an} 為由函數(shù)f(x)導(dǎo)出的數(shù)列.
          設(shè)函數(shù)g(x)=
          4x+2
          x+3
          ,h(x)=
          ax+b
          cx+d
          (c≠0,ad-bc≠0,(d-a)2+4bc>0)

          (1)求函數(shù)g(x)的不動(dòng)點(diǎn)x1,x2;
          (2)設(shè)a1=3,{an} 是由函數(shù)g(x)導(dǎo)出的數(shù)列,對(duì)(1)中的兩個(gè)不動(dòng)點(diǎn)x1,x2(不妨設(shè)x1<x2),數(shù)列求證{
          an-x1
          an-x2
          }
          是等比數(shù)列,并求
          lim
          n→∞
          an
          ;
          (3)試探究由函數(shù)h(x)導(dǎo)出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
          注:已知數(shù)列{bn},若存在正整數(shù)T,對(duì)一切n∈N*都有bn+T=bn,則稱(chēng)數(shù)列{bn} 為周期數(shù)列,T是它的一個(gè)周期.

          查看答案和解析>>

          已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x稱(chēng)為函數(shù)f(x)的不動(dòng)點(diǎn);若a1∈D,an+1=f(an)(n∈N*),則稱(chēng){an} 為由函數(shù)f(x)導(dǎo)出的數(shù)列.
          設(shè)函數(shù)g(x)=,h(x)=
          (1)求函數(shù)g(x)的不動(dòng)點(diǎn)x1,x2;
          (2)設(shè)a1=3,{an} 是由函數(shù)g(x)導(dǎo)出的數(shù)列,對(duì)(1)中的兩個(gè)不動(dòng)點(diǎn)x1,x2(不妨設(shè)x1<x2),數(shù)列求證是等比數(shù)列,并求
          (3)試探究由函數(shù)h(x)導(dǎo)出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
          注:已知數(shù)列{bn},若存在正整數(shù)T,對(duì)一切n∈N*都有bn+T=bn,則稱(chēng)數(shù)列{bn} 為周期數(shù)列,T是它的一個(gè)周期.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案