日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解析:設(shè).則有.當(dāng)時(shí)..而.,當(dāng)時(shí)..即.而.則.故. 答案:D 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)?啤>W(wǎng)]

          (Ⅰ)求a、b的值; 

          (Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

          【解析】第一問解:因?yàn)?i>f(x)=lnx,gx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          第二問,由(I)可知,令。

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

          解:因?yàn)?i>f(x)=lnx,gx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          (11)由(I)可知,令

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明:

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對(duì)偶式)設(shè),,

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點(diǎn)為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點(diǎn)A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          已知函數(shù),.

          (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

          (Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

          【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。

          第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

          解:(1)

          (2)不等式 ,即,即.

          轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

          即不等式上恒成立.

          即不等式上恒成立.

          設(shè),則.

          設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

          在區(qū)間上是減函數(shù)。又

          故存在,使得.

          當(dāng)時(shí),有,當(dāng)時(shí),有.

          從而在區(qū)間上遞增,在區(qū)間上遞減.

          [來源:]

          所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

          故使命題成立的正整數(shù)m的最大值為5

           

          查看答案和解析>>

          已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于兩點(diǎn)。

          (I)求曲線的方程;

          (II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

          【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

          ,曲線的方程為

          第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 

          ,∴

          確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).

          然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

          要使軸平分,只要得到。

          (1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

          ,曲線的方程為.  ………………2分       

          (2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

          代入曲線的方程,可得 ,……5分            

          ,∴,

          ∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

          ………………6分

          設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

          要使軸平分,只要,            ………………9分

          ,,        ………………10分

          也就是,,

          ,即只要  ………………12分  

          當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

          所以在x軸上存在定點(diǎn),使得總能被軸平分

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案