日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由得即上是增函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時,,則。

          依題意得:,即    解得

          第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時,,令

          當(dāng)變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,!上的最大值為2.

          ②當(dāng)時, .當(dāng)時, ,最大值為0;

          當(dāng)時, 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

          當(dāng)時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對任意不等式恒成立,

          問題等價于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個極小值是唯一的極值點(diǎn),

          故也是最小值點(diǎn),所以;            ............6分

          當(dāng)b<1時,

          當(dāng)時,;

          當(dāng)b>2時,;             ............8分

          問題等價于 ........11分

          解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

           

          查看答案和解析>>

          已知函數(shù),

          (1)求函數(shù)的定義域;

          (2)求函數(shù)在區(qū)間上的最小值;

          (3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

          【解析】第一問中,利用由 即

          第二問中,,得:

          ,

          第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時;當(dāng)命題p為假,命題q為真時分為兩種情況討論即可 。

          解:(1)由 即

          (2)得:

          ,

          (3)由在函數(shù)的定義域上 的任意,當(dāng)且僅當(dāng)時等號成立。當(dāng)命題p為真時,;而命題q為真時:指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

          當(dāng)命題p為真,命題q為假時,

          當(dāng)命題p為假,命題q為真時,,

          所以

           

          查看答案和解析>>

          某省環(huán)保研究所對市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻(時) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且

          (1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;

          (2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;

          (3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

          【解析】第一問利用定義法求證單調(diào)性,并判定結(jié)論。

          第二問(2)由函數(shù)的單調(diào)性知,

          ,即t的取值范圍是. 

          當(dāng)時,記

           

          上單調(diào)遞減,在上單調(diào)遞增,

          第三問因?yàn)楫?dāng)且僅當(dāng)時,.

          故當(dāng)時不超標(biāo),當(dāng)時超標(biāo).

           

          查看答案和解析>>

          如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點(diǎn),|AB|=3米,|AD|=2米,

          (I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?

          (II)當(dāng)AN的長度是多少時,矩形AMPN的面積最。坎⑶蟪鲎钚∶娣e.

          (Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.

          【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

          (I)由SAMPN > 32 得 > 32 ,

          ∵x >2,∴,即(3x-8)(x-8)> 0

          ∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

          第二問,  

          當(dāng)且僅當(dāng)

          (3)令

          ∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

          ∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

           

          查看答案和解析>>


          同步練習(xí)冊答案