日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (C)3 (D)4 查看更多

           

          題目列表(包括答案和解析)

          (x+4的展開(kāi)式中系數(shù)為有理數(shù)的項(xiàng)有(    )

          A.1項(xiàng)                B.2項(xiàng)              C.3項(xiàng)                D.4項(xiàng)

          查看答案和解析>>

          (1)y=tanx在定義域上是增函數(shù);
          (2)y=sinx在第一、第四象限是增函數(shù);
          (3)y=sinx與y=cosx在第二象限都是減函數(shù);
          (4)y=sinx在x∈[-
          π
          2
          π
          2
          ]
          上是增函數(shù),上述四個(gè)命題中,正確的個(gè)數(shù)是( 。
          A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

          查看答案和解析>>

          (1)選修4-2:矩陣與變換
          已知矩陣M=(
          2a
          2b
          )的兩^E值分別為λ1=-1和λ2=4.
          (I)求實(shí)數(shù)的值;
          (II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
          x=sinα
          y=2cos2α-2

          (a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
          π
          4
          )=-
          3
          2
          2

          (I )將曲線C的參數(shù)方程化為普通方程;
          (II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.
          (3)選修4-5:不等式選講
          已知a,b為正實(shí)數(shù).
          (I)求證:
          a2
          b
          +
          b2
          a
          ≥a+b;
          (II)利用(I)的結(jié)論求函數(shù)y=
          (1-x)2
          x
          +
          x2
          1-x
          (0<x<1)的最小值.

          查看答案和解析>>

          (1)選修4-2:矩陣與變換
          已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
          e1
          =
          1
          1
          ,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          過(guò)點(diǎn)M(3,4),傾斜角為
          π
          6
          的直線l與圓C:
          x=2+5cosθ
          y=1+5sinθ
          (θ為參數(shù))相交于A、B兩點(diǎn),試確定|MA|•|MB|的值.
          (3)選修4-5:不等式選講
          已知實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

          查看答案和解析>>

          (理)某娛樂(lè)中心有如下摸獎(jiǎng)活動(dòng):拿8個(gè)白球和8個(gè)黑球放在一盒中,規(guī)定:凡摸獎(jiǎng)?wù),每人每次交費(fèi)1元,每次從盒中摸出5個(gè)球,中獎(jiǎng)情況為:摸出5個(gè)白球中20元,摸出4個(gè)白球1個(gè)黑球中2元,摸出3個(gè)白球2個(gè)黑球中價(jià)值為0.5元的紀(jì)念品1件,其他情況無(wú)任何獎(jiǎng)勵(lì).若有1560人次摸獎(jiǎng),不計(jì)其他支出,用概率估計(jì)該中心收入錢數(shù)為( 。
          A、120元B、480元C、980元D、148元

          查看答案和解析>>

           

          一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

          1-5:DBADC; 6-10:BACDC; 11-12: BC.

          二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

          13.3; 14.-4; 15.1; 16.

          三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說(shuō)明,證明過(guò)程或演算步驟.

           

          17.解:(Ⅰ)∵l1∥l2,

          ,????????????????????????? 3分

          ,

          .??????????????????????? 6分

          (Ⅱ)∵

          ,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??? 8分

          ,∴,???????????? 10分

          ,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ

          故△ABC面積取最大值為.?????????????????????? 12分

           

          18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

          ①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????? 1分

          ②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;????? 3分

          ③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????? 5分

          ∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

          (Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

          (k=1、2、3、4).?? 8分

          則ξ的概率分布列為:

          ξ

          1

          2

          3

          4

          P

          ??????????????????????????????????? 10分

          ∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .????????? 12分

           

          19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1 2分

          ∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

          ∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

          (Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,,.則,,.??????????????????????????? 5分

          設(shè)是平面ABC的一個(gè)法向量,

          ,則.設(shè)A1到平面ABC的距離為d.

          .????????????????????? 8分

          (Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.    9分

          .????????????????? 11分

          ∴二面角B-AC-C1的余弦值是.??????????????????? 12分

           

          20.解:(Ⅰ),對(duì)稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.???????????????????????? 2分

          當(dāng)時(shí),.?????????????????????????? 3分

                      ①

                 ②

          ②-①得,即,?????????????? 4分

          ,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

          ,∴.?????????????? 6分

          (Ⅱ)∵,∴

          ???????????????? 7分

          可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

          ????????????????????? 10分

          可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.??? 12分

           

          21.解:(Ⅰ)設(shè),,

          ,,

          ,,

          .∵,

          ,∴,∴.?????????????????? 2分

          則N(c,0),M(0,c),所以,

          ,則,

          ∴橢圓的方程為.?????????????????????? 4分

          (Ⅱ)∵圓O與直線l相切,則,即,????????? 5分

          消去y得

          ∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

          ,

          ,?????????????????? 7分

          ,

          ,,.????? 8分

          .??????????? 9分

          (或).

          設(shè),則,

          ,則,

          時(shí)單調(diào)遞增,????????????????????? 11分

          ∴S關(guān)于μ在區(qū)間單調(diào)遞增,,

          .???????????????????????????? 12分

          (或

          ∴S關(guān)于u在區(qū)間單調(diào)遞增,???????????????????? 11分

          ,,.)???????????????? 12分

           

          22.解:(Ⅰ)因?yàn)?sub>,,則,   1分

          當(dāng)時(shí),;當(dāng)時(shí),

          上單調(diào)遞增;在上單調(diào)遞減,

          ∴函數(shù)處取得極大值.???????????????????? 2分

          ∵函數(shù)在區(qū)間(其中)上存在極值,

          解得.??????????????????????? 3分

          (Ⅱ)不等式,即為,???????????? 4分

          ,∴,?? 5分

          ,則,∵,∴,上遞增,

          ,從而,故上也單調(diào)遞增,

          ,

          .??????????????????????????????? 7分

          (Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

          ,??????????????? 9分

          ,

          ,

          ………

          ,??????????????????????? 10分

          疊加得:

          .???????????????????? 12分

          ,

          .???????????????????? 14


          同步練習(xí)冊(cè)答案