日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若ab.

             (1)用a b表示;

             (2)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的取值范圍.

          查看答案和解析>>

          (本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足

          (1)求動(dòng)點(diǎn)P的軌跡方程。

          (2)若過點(diǎn)A的直線L與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),且

          其中Q(-1,0),求直線L的方程.

          查看答案和解析>>

          (本小題滿分14分)

           已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m          

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對(duì)數(shù)的底數(shù)。

          查看答案和解析>>

          (本小題滿分14分)

          已知數(shù)列{an}和{bn}滿足:a1=λan+1=其中λ為實(shí)數(shù),n為正整數(shù)。

          (Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

          (Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

          (Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有

          aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

          查看答案和解析>>

          (本小題滿分14分)

          如圖(1),是等腰直角三角形,,分別為、的中點(diǎn),將沿折起, 使在平面上的射影恰為的中點(diǎn),得到圖(2).

          (Ⅰ)求證:;

          (Ⅱ)求三棱錐的體積.

          查看答案和解析>>

          一、            選擇題(每小題5分,共60分)

           

          BBDACA     CDBDBA

           

          二、填空題(每小題4分,共16分)

          13.       14.         15.        16.

          三、解答題

          17.(本小題滿分12分)

          解:(Ⅰ)∵,

          ,得

          兩邊平方:=,∴= ………………6分

          (Ⅱ)∵,

          ,解得

          又∵, ∴,

          ,,

          設(shè)的夾角為,則,∴

          的夾角為. …………… 12分

          18. (本小題滿分12分)

          解:(Ⅰ)小王在第三次考試中通過而領(lǐng)到駕照的概率為:

                      ………………………6分

                    (Ⅱ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

          ………………12分

          19.(本小題滿分12分)

          (Ⅰ)證明:由已知得,所以,即

          ,,∴, 平面

          ∴平面平面.……………………………4分(文6分)

          (Ⅱ)解:設(shè)的中點(diǎn)為,連接,則

          是異面直線所成的角或其補(bǔ)角

          由(Ⅰ)知,在中,,,

          .

          所以異面直線所成的角為.…………………8分(文12分)

          20.(本小題滿分12分)

          解:(Ⅰ)∵        

          據(jù)題意,,

            ………………………4分

                   (Ⅱ)由(Ⅰ)知,

                       ∴

          ∴對(duì)于,最小值為 ………………… 8分

          的對(duì)稱軸為,且拋物線開口向下,

          時(shí),最小值為中較小的,

          ,

          ∴當(dāng)時(shí),的最小值是-7.

          的最小值為-11. ………………………12分

          21.(本小題滿分12分)

          解:(Ⅰ)∵

                    ∴

          ,則,∴

          ,∴

          .……………6分

               (Ⅱ)證明:由(Ⅰ)知:

                    記

                    用錯(cuò)位相減法求和得:

                    令,

                    ∵

                    ∴數(shù)列是遞減數(shù)列,∴,

                    ∴.

                    即.………………………12分

                 (由證明也給滿分)

          22.(本小題滿分14分)

          解:(Ⅰ)①當(dāng)直線軸時(shí),

          ,此時(shí),∴.

          (不討論扣1分)

          ②當(dāng)直線不垂直于軸時(shí),,設(shè)雙曲線的右準(zhǔn)線為,

          ,作,作且交軸于

          根據(jù)雙曲線第二定義有:,

          到準(zhǔn)線的距離為.

          ,得:

          ,∴,∵此時(shí),∴

          綜上可知.………………………………………7分

          (Ⅱ)設(shè),代入雙曲線方程得

          ,則,且代入上面兩式得:

           ①

               ②

          由①②消去

            ③

          有:,綜合③式得

          ,解得

          的取值范圍為…………………………14分

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案