日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖.已知橢圓的焦點和上頂點分別為... 查看更多

           

          題目列表(包括答案和解析)

          如圖,已知橢圓的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
          (2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
          (3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關(guān)于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

          查看答案和解析>>

          如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.

          (1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;

          (2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當(dāng)面積最大時, 是否與有關(guān)?并證明你的結(jié)論.

          (3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認(rèn)為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

           

          查看答案和解析>>

          如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;
          (2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當(dāng)面積最大時,是否與有關(guān)?并證明你的結(jié)論.
          (3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認(rèn)為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

          查看答案和解析>>

          如圖,已知橢圓的焦點和上頂點分別為、、

          我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為 橢圓的相似比.

          (1)已知橢圓,

          判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;

          (2)設(shè)短半軸長為的橢圓與橢圓相似,試問在橢圓上是否存在兩點、關(guān)于直線對稱,,若存在求出b的范圍,不存在說明理由.

          查看答案和解析>>

          如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。

          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程

          (Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1

          (Ⅲ)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,請說明理由。

           

           

           

          查看答案和解析>>

          一、          填空題:

           1、   2、   3、128  4、  5、64     6、 

           7、    8、    9、-4  10、15  11、

           12、(1)(2)(5)

          二、選擇題:

           13、D      14、  C    15、  B    16、 C

           

          17、解:以A為原點,以AB、AD、AP所在直線分別軸,

          建立空間直角坐標(biāo)系。 -----2分

          則  C(2,1,0) N(1,0,1)  =(-1,-1,1)---4分

                  D(0,2,0) M(1,,1) =(1,-,1)---6分

          設(shè)的夾角為,

            ----8分  

            ---10分

            異面直線所成的角為  -----12分

          18、解:延長,作于D,------4分

          設(shè),則

           ------8分

          解得.------10分

          故船繼續(xù)朝原方向前進(jìn)有觸礁的危險.-----12

           

          19、解: (1)因為f(x+y)=f(x)+f(y),

          令x=y=0,代入①式,-----2分

          得f(0+0)=f(0)+f(0),即 f(0)=0  --------4分

          (2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,

          則有0=f(x)+f(-x).------6分

          即f(-x)=-f(x)對任意x∈R成立,

          所以f(x)是奇函數(shù).......8分

          (3)    f(3)=log3>0,即f(3)>f(0),

          又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),----10分

          又由(1)f(x)是奇函數(shù).

            f(k?3)<-f(3-9-2)=f(-3+9+2),

          k?3<-3+9+2,

          ------12

           ------------14分

          20、解:(1)為等差數(shù)列,∵,又,

          ,是方程的兩個根

          又公差,∴,∴,      --------     2分

             ∴   ∴     -----------4分

          (2)由(1)知,         -----------5分

          ,,         ------------7分

          是等差數(shù)列,∴,∴    ----------8分

          舍去)                         ------------9分

          (3)由(2)得                    -------------11分

            ,時取等號 ------- 13分

          時取等號15分

          (1)、(2)式中等號不可能同時取到,所以   -----------16分

           

           

           

          21、解:(1)橢圓相似.   -----2分

          因為的特征三角形是腰長為4,底邊長為的等腰三角形,

          而橢圓的特征三角形是腰長為2,

          底邊長為的等腰三角形,

          因此兩個等腰三角形相似,且相似比為.                                                                                                              --- 6分

          (2)橢圓的方程為:.        --------8分

          假定存在,則設(shè)、所在直線為,中點為.

          .       -------10分

          所以.

          中點在直線上,所以有.        ----12分

          .

          .     -------14分

          (3)橢圓的方程為:.        

          兩個相似橢圓之間的性質(zhì)有:                          寫出一個給2分

          ①     兩個相似橢圓的面積之比為相似比的平方;

          ②     分別以兩個相似橢圓的頂點為頂點的四邊形也相似,相似比即為橢圓的相似比;

          ③     兩個相似橢圓被同一條直線所截得的線段中點重合;

          過原點的直線截相似橢圓所得線段長度之比恰為橢圓的相似比.    ----20分

           

           

           

           


          同步練習(xí)冊答案