日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (13)已知正數(shù)滿足.則的最小值為 , 查看更多

           

          題目列表(包括答案和解析)

          (09年濱州一模理)已知正數(shù)滿足,則的最小值為                 

          查看答案和解析>>

          已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
          π
          3
          時,f(x)取得極小值
          π
          3
          -
          3

          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
          ①直線l與曲線S相切且至少有兩個切點;
          ②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記h(x)=
          1
          8
          [5x-f(x)]
          ,設(shè)x1是方程h(x)-x=0的實數(shù)根,若對于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時,f(x)取得極小值數(shù)學(xué)公式
          (1)求a,b的值;
          (2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
          ①直線l與曲線S相切且至少有兩個切點;
          ②對任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
          試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
          (3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實數(shù)根,若對于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

          查看答案和解析>>

          已知函數(shù)y=f(x),任取t∈R,定義集合:At={y|y=f(x)},點P(t,f(t)),Q(x,f(x))滿足|PQ|數(shù)學(xué)公式}.設(shè)Mt,mt分別表示集合At中元素的最大值和最小值,記h(t)=Mt-mt.則
          (1)若函數(shù)f(x)=x,則h(1)=______;
          (2)若函數(shù)f(x)=sin數(shù)學(xué)公式x,則h(t)的最小正周期為______.

          查看答案和解析>>

          已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2.

          (1)試求函數(shù)f(x)的最大值和最小值;

          (2)試比較f(n)與n+2的大小(n∈N);

          (3)某人發(fā)現(xiàn):當(dāng)x=n(n∈N)時,有f(x)<2x+2.由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

          查看答案和解析>>

          一、選擇題(每小題5分,共計60分)

          ABADD  CACAC  AB

          二、填空題(每小題4分,共計16分)

          (13)4;(14);(15);(16)①④.

          三、解答題:

          17.解:(本小題滿分12分)

          (Ⅰ) 由題意

             

                    

                    

              由題意,函數(shù)周期為3,又>0,;

             (Ⅱ) 由(Ⅰ)知

                

                

          又x,的減區(qū)間是.

          (18) (本小題滿分12分)

          解:(1)隨機變量的所有可能取值為

          所以隨機變量的分布列為

          0

          1

          2

          3

          4

          5

             (2)∵隨機變量

                  ∴

          19. (本小題滿分12分)

          解:(Ⅰ)∵   底面ABCD是正方形,

          ∴AB⊥BC,

          又平面PBC⊥底面ABCD  

          平面PBC ∩  平面ABCD=BC

          ∴AB  ⊥平面PBC

          又PC平面PBC

          ∴AB  ⊥CP  ………………3分

          (Ⅱ)解法一:體積法.由題意,面,

           

          中點,則

          .

          再取中點,則   ………………5分

          設(shè)點到平面的距離為,則由

          .                   ………………7分

          解法二:

          中點,再取中點

          ,

          過點,則

          中,

          ∴點到平面的距離為。  ………………7分

          解法三:向量法(略)

          (Ⅲ)

          就是二面角的平面角.

          ∴二面角的大小為45°.   ………………12分

          方法二:向量法(略).

          (20)(本小題滿分12分)

          解:(Ⅰ)方法一:∵,

          .           

          設(shè)直線

          并設(shè)l與g(x)=x2相切于點M()

            ∴2

          代入直線l方程解得p=1或p=3.

                                       

          方法二:  

          將直線方程l代入

          解得p=1或p=3 .                                      

          (Ⅱ)∵,                                

          ①要使為單調(diào)增函數(shù),須恒成立,

          恒成立,即恒成立,

          ,所以當(dāng)時,為單調(diào)增函數(shù);   …………6分

          ②要使為單調(diào)減函數(shù),須恒成立,

          恒成立,即恒成立,

          ,所以當(dāng)時,為單調(diào)減函數(shù).                

          綜上,若為單調(diào)函數(shù),則的取值范圍為.………8分

           

          (21) (本小題滿分12分)

          (1)∵直線的方向向量為

          ∴直線的斜率為,又∵直線過點

          ∴直線的方程為

          ,∴橢圓的焦點為直線軸的交點

          ∴橢圓的焦點為

          ,又∵

          ,∴

          ∴橢圓方程為  

          (2)設(shè)直線MN的方程為

          ,

          設(shè)坐標(biāo)分別為

             (1)    (2)        

          >0

          ,

          ,顯然,且

          代入(1) (2),得

          ,得

          ,即

          解得.

           (22) (本小題滿分14分)

          (1)  解:過的直線方程為

          聯(lián)立方程消去

          (2)

          是等比數(shù)列

            ,;

          (III)由(II)知,,要使恒成立由=>0恒成立,

          即(-1)nλ>-(n1恒成立.

          ?。當(dāng)n為奇數(shù)時,即λ<(n1恒成立.

          又(n1的最小值為1.∴λ<1.                                                              10分

          ?。當(dāng)n為偶數(shù)時,即λ>-(n-1恒成立,

          又-(n1的最大值為-,∴λ>-.                                                 11分

          即-<λ<1,又λ≠0,λ為整數(shù),

          λ=-1,使得對任意n∈N*,都有                                                                                    


          同步練習(xí)冊答案