日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)當(dāng)d>0時(shí).求Tn. 查看更多

           

          題目列表(包括答案和解析)

          已知等差數(shù)列an中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14.
          (1)求數(shù)列an的通項(xiàng)公式;
          (2)設(shè)由bn=
          Sn
          n+c
          (c≠0)構(gòu)成的新數(shù)列為bn,求證:當(dāng)且僅當(dāng)c=-
          1
          2
          時(shí),數(shù)列bn是等差數(shù)列;
          (3)對(duì)于(2)中的等差數(shù)列bn,設(shè)cn=
          8
          (an+7)•bn
          (n∈N*),數(shù)列cn的前n項(xiàng)和為T(mén)n,現(xiàn)有數(shù)列f(n),f(n)=
          2bn
          an-2
          -Tn
          (n∈N*),
          求證:存在整數(shù)M,使f(n)≤M對(duì)一切n∈N*都成立,并求出M的最小值.

          查看答案和解析>>

          已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1=a4=14.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)由bn=數(shù)學(xué)公式(c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-數(shù)學(xué)公式時(shí),數(shù)列{bn}是等差數(shù)列;
          (3)對(duì)于(2)中的等差數(shù)列{bn},設(shè)cn=數(shù)學(xué)公式(n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-數(shù)學(xué)公式)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)對(duì)一切n∈N*都成立?若存在,求出n0的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1=a4=14.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)由bn=
          Sn
          n+c
          (c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-
          1
          2
          時(shí),數(shù)列{bn}是等差數(shù)列;
          (3)對(duì)于(2)中的等差數(shù)列{bn},設(shè)cn=
          8
          (an+7)•bn
          (n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-
          8
          bn
          )•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)對(duì)一切n∈N*都成立?若存在,求出n0的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          已知等差數(shù)列an中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14.
          (1)求數(shù)列an的通項(xiàng)公式;
          (2)設(shè)由bn=
          Sn
          n+c
          (c≠0)構(gòu)成的新數(shù)列為bn,求證:當(dāng)且僅當(dāng)c=-
          1
          2
          時(shí),數(shù)列bn是等差數(shù)列;
          (3)對(duì)于(2)中的等差數(shù)列bn,設(shè)cn=
          8
          (an+7)•bn
          (n∈N*),數(shù)列cn的前n項(xiàng)和為T(mén)n,現(xiàn)有數(shù)列f(n),f(n)=
          2bn
          an-2
          -Tn
          (n∈N*),
          求證:存在整數(shù)M,使f(n)≤M對(duì)一切n∈N*都成立,并求出M的最小值.

          查看答案和解析>>

          已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1=a4=14.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)由bn=(c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-時(shí),數(shù)列{bn}是等差數(shù)列;
          (3)對(duì)于(2)中的等差數(shù)列{bn},設(shè)cn=(n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-)•0.9n(n∈N*),是否存在n∈N*,使f(n)≤f(n)對(duì)一切n∈N*都成立?若存在,求出n的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          難點(diǎn)磁場(chǎng)

          6ec8aac122bd4f6e

          殲滅難點(diǎn)訓(xùn)練

          一、1.解析:6ec8aac122bd4f6e,

          6ec8aac122bd4f6e

          答案:A

          2.解析:6ec8aac122bd4f6e

          答案:C

          二、3.解析:6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          答案:6ec8aac122bd4f6e

          4.解析:原式=6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          a?b=86ec8aac122bd4f6e

          答案:86ec8aac122bd4f6e

          三、5.解:(1)由{an+16ec8aac122bd4f6ean}是公比為6ec8aac122bd4f6e的等比數(shù)列,且a1=6ec8aac122bd4f6e,a2=6ec8aac122bd4f6e,

          an+16ec8aac122bd4f6ean=(a26ec8aac122bd4f6ea1)(6ec8aac122bd4f6e)n-1=(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)(6ec8aac122bd4f6e)n-1=6ec8aac122bd4f6e,

          an+1=6ec8aac122bd4f6ean+6ec8aac122bd4f6e                                               ①

          又由數(shù)列{lg(an+16ec8aac122bd4f6ean)}是公差為-1的等差數(shù)列,且首項(xiàng)lg(a26ec8aac122bd4f6ea1)

          =lg(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)=-2,

          ∴其通項(xiàng)lg(an+16ec8aac122bd4f6ean)=-2+(n-1)(-1)=-(n+1),

          an+16ec8aac122bd4f6ean=10(n+1),即an+1=6ec8aac122bd4f6ean+10(n+1)                                                                                                

          ①②聯(lián)立解得an=6ec8aac122bd4f6e[(6ec8aac122bd4f6e)n+1-(6ec8aac122bd4f6e)n+1

          (2)Sn=6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6.解:由于6ec8aac122bd4f6e=1,可知,f(2a)=0                                                                      ①

          同理f(4a)=0                                                                                                            ②

          由①②可知f(x)必含有(x-2a)與(x-4a)的因式,由于f(x)是x的三次多項(xiàng)式,故可設(shè)f(x)=A(x-2a)(x-4a)(xC),這里A、C均為待定的常數(shù),

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e,即4a2A-2aCA=-1                                                         ③

          同理,由于6ec8aac122bd4f6e=1,得A(4a-2a)(4aC)=1,即8a2A-2aCA=1                        ④

          由③④得C=3a,A=6ec8aac122bd4f6e,因而f(x)= 6ec8aac122bd4f6e (x-2a)(x-4a)(x-3a),

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          由數(shù)列{an}、{bn}都是由正數(shù)組成的等比數(shù)列,知p>0,q>0

          6ec8aac122bd4f6e

          當(dāng)p<1時(shí),q<1, 6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          8.解:(1)an=(n-1)d,bn=26ec8aac122bd4f6e=2(n1)d?

          Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n1)d?

          d≠0,2d≠1,∴Sn=6ec8aac122bd4f6e

          Tn=6ec8aac122bd4f6e

          (2)當(dāng)d>0時(shí),2d>1

          6ec8aac122bd4f6e

           

           

           


          同步練習(xí)冊(cè)答案