日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2.BC=6.CD=DA=4.求四邊形ABCD的面積. 查看更多

           

          題目列表(包括答案和解析)

          已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4求四邊形ABCD的面積.

          查看答案和解析>>

          已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積.

          查看答案和解析>>

          已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積。

          查看答案和解析>>

          已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積.

             

          查看答案和解析>>

          已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積.

          查看答案和解析>>

          難點(diǎn)磁場(chǎng)

          解法一:由題設(shè)條件知B=60°,A+C=120°.

          設(shè)α=6ec8aac122bd4f6e,則AC=2α,可得A=60°+α,C=60°-α

          6ec8aac122bd4f6e

          依題設(shè)條件有6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          整理得46ec8aac122bd4f6ecos2α+2cosα-36ec8aac122bd4f6e=0(M)

          (2cosα6ec8aac122bd4f6e)(26ec8aac122bd4f6ecosα+3)=0,∵26ec8aac122bd4f6ecosα+3≠0,

          ∴2cosα6ec8aac122bd4f6e=0.從而得cos6ec8aac122bd4f6e.

          解法二:由題設(shè)條件知B=60°,A+C=120°

          6ec8aac122bd4f6e                                                              ①,把①式化為cosA+cosC=-26ec8aac122bd4f6ecosAcosC                                                              ②,

          利用和差化積及積化和差公式,②式可化為

          6ec8aac122bd4f6e                                          ③, 

          將cos6ec8aac122bd4f6e=cos60°=6ec8aac122bd4f6e,cos(A+C)=-6ec8aac122bd4f6e代入③式得:

          6ec8aac122bd4f6e                                                                             ④

          將cos(AC)=2cos2(6ec8aac122bd4f6e)-1代入 ④:46ec8aac122bd4f6ecos2(6ec8aac122bd4f6e)+2cos6ec8aac122bd4f6e-36ec8aac122bd4f6e=0,(*),6ec8aac122bd4f6e

          殲滅難點(diǎn)訓(xùn)練

          一、1.解析:其中(3)(4)正確.

          答案: B

          二、2.解析:∵A+B+C=π,A+C=2B,

          6ec8aac122bd4f6e

          答案:6ec8aac122bd4f6e

          3.解析:∵A為最小角∴2A+C=A+A+CA+B+C=180°.

          ∵cos(2A+C)=-6ec8aac122bd4f6e,∴sin(2A+C)=6ec8aac122bd4f6e.

          C為最大角,∴B為銳角,又sinB=6ec8aac122bd4f6e.故cosB=6ec8aac122bd4f6e.

          即sin(A+C)=6ec8aac122bd4f6e,cos(A+C)=-6ec8aac122bd4f6e.

          ∵cos(B+C)=-cosA=-cos[(2A+C)-(A+C)]=-6ec8aac122bd4f6e,

          ∴cos2(B+C)=2cos2(B+C)-1=6ec8aac122bd4f6e.

          答案:6ec8aac122bd4f6e

          三、4.解:如圖:連結(jié)BD,則有四邊形ABCD的面積:

          6ec8aac122bd4f6e

          S=SABD+SCDB=6ec8aac122bd4f6e?AB?ADsinA+6ec8aac122bd4f6e?BC?CD?sinC

          A+C=180°,∴sinA=sinC

          S=6ec8aac122bd4f6e(AB?AD+BC?CD)sinA=6ec8aac122bd4f6e(2×4+6×4)sinA=16sinA

          由余弦定理,在△ABD中,BD2=AB2+AD2-2AB?AD?cosA=20-16cosA

          在△CDB中,BD2=CB2+CD2-2CB?CD?cosC=52-48cosC

          ∴20-16cosA=52-48cosC,∵cosC=-cosA

          ∴64cosA=-32,cosA=-6ec8aac122bd4f6e,又0°<A<180°,∴A=120°故S=16sin120°=86ec8aac122bd4f6e.

          5.解:R=rcosθ,由此得:6ec8aac122bd4f6e,

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          7.解:由a、b3c成等比數(shù)列,得:b2=3ac

          ∴sin2B=3sinC?sinA=3(-6ec8aac122bd4f6e)[cos(A+C)-cos(AC)]

          B=π-(A+C).∴sin2(A+C)=-6ec8aac122bd4f6e[cos(A+C)-cos6ec8aac122bd4f6e

          即1-cos2(A+C)=-6ec8aac122bd4f6ecos(A+C),解得cos(A+C)=-6ec8aac122bd4f6e.

          ∵0<A+Cπ,∴A+C=6ec8aac122bd4f6eπ.又AC=6ec8aac122bd4f6eA=6ec8aac122bd4f6eπ,B=6ec8aac122bd4f6e,C=6ec8aac122bd4f6e.

          8.解:按題意,設(shè)折疊后A點(diǎn)落在邊BC上改稱P點(diǎn),顯然A、P兩點(diǎn)關(guān)于折線DE對(duì)稱,又設(shè)∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,再設(shè)AB=a,AD=x,∴DP=x.在△ABC中,

          APB=180°-∠ABP-∠BAP=120°-θ,?

          由正弦定理知:6ec8aac122bd4f6e.∴BP=6ec8aac122bd4f6e

          在△PBD中,6ec8aac122bd4f6e,

          6ec8aac122bd4f6e 

          ∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴當(dāng)60°+2θ=90°,即θ=15°時(shí),

          sin(60°+2θ)=1,此時(shí)x取得最小值6ec8aac122bd4f6ea,即AD最小,∴ADDB=26ec8aac122bd4f6e-3.


          同步練習(xí)冊(cè)答案