日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)x,y滿足x≥1,y≥1.loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)x,y滿足x≥1,y≥1  loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范圍.

          查看答案和解析>>

          已知函數(shù)x,y滿足x≥1,y≥1 loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范圍.

          查看答案和解析>>

          難點(diǎn)磁場(chǎng)

          解:(1)由6ec8aac122bd4f6e>0,且2-x≠0得F(x)的定義域?yàn)?-1,1),設(shè)-1<x1x2<1,則

          F(x2)-F(x1)=(6ec8aac122bd4f6e)+(6ec8aac122bd4f6e)

          6ec8aac122bd4f6e,

          x2x1>0,2-x1>0,2-x2>0,∴上式第2項(xiàng)中對(duì)數(shù)的真數(shù)大于1.

          因此F(x2)-F(x1)>0,F(x2)>F(x1),∴F(x)在(-1,1)上是增函數(shù).

          (2)證明:由y=f(x)=6ec8aac122bd4f6e得:2y=6ec8aac122bd4f6e,

          f1(x)=6ec8aac122bd4f6e,∵f(x)的值域?yàn)?b>R,∴f-1(x)的定義域?yàn)?b>R.

          當(dāng)n≥3時(shí),f-1(n)>6ec8aac122bd4f6e.

          用數(shù)學(xué)歸納法易證2n>2n+1(n≥3),證略.

          (3)證明:∵F(0)=6ec8aac122bd4f6e,∴F1(6ec8aac122bd4f6e)=0,∴x=6ec8aac122bd4f6eF1(x)=0的一個(gè)根.假設(shè)F1(x)=0還有一個(gè)解x0(x06ec8aac122bd4f6e),則F-1(x0)=0,于是F(0)=x0(x06ec8aac122bd4f6e).這是不可能的,故F-1(x)=0有惟一解.

          殲滅難點(diǎn)訓(xùn)練

          一、1.解析:由題意:g(x)+h(x)=lg(10x+1)                                                                      ①

          g(-x)+h(-x)=lg(10x+1).即-g(x)+h(x)=lg(10x+1)                                             ②

          由①②得:g(x)=6ec8aac122bd4f6e,h(x)=lg(10x+1)-6ec8aac122bd4f6e.

          答案:C

          2.解析:當(dāng)a>1時(shí),函數(shù)y=logax的圖象只能在A和C中選,又a>1時(shí),y=(1-a)x為減函數(shù).

          答案:B

          二、3.解析:容易求得f- 1(x)=6ec8aac122bd4f6e,從而:

          f1(x-1)=6ec8aac122bd4f6e

          答案:6ec8aac122bd4f6e

          4.解析:由題意,5分鐘后,y1=aent,y2=aaent,y1=y2.∴n=6ec8aac122bd4f6eln2.設(shè)再過t分鐘桶1中的水只有6ec8aac122bd4f6e,則y1=aen(5+t)=6ec8aac122bd4f6e,解得t=10.

          答案:10

          三、5.解:(1)設(shè)點(diǎn)Q的坐標(biāo)為(x′,y′),則x′=x-2a,y′=-y.即x=x′+2a,y=-y′.

          ∵點(diǎn)P(x,y)在函數(shù)y=loga(x-3a)的圖象上,∴-y′=loga(x′+2a-3a),即y′=loga6ec8aac122bd4f6e,∴g(x)=loga6ec8aac122bd4f6e.

          (2)由題意得x-3a=(a+2)-3a=-2a+2>0;6ec8aac122bd4f6e=6ec8aac122bd4f6e>0,又a>0且a≠1,∴0<a<1,∵|f(x)-g(x)|=|loga(x-3a)-loga6ec8aac122bd4f6e|=|loga(x2-4ax+3a2)|?|f(x)-g(x)|≤1,∴-1≤loga(x2-4ax+3a2)≤1,∵0<a<1,∴a+2>2a.f(x)=x2-4ax+3a2在[a+2,a+3]上為減函數(shù),∴μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上為減函數(shù),從而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求問題轉(zhuǎn)化為求不等式組6ec8aac122bd4f6e的解.

          由loga(9-6a)≥-1解得0<a6ec8aac122bd4f6e,由loga(4-4a)≤1解得0<a6ec8aac122bd4f6e,

          ∴所求a的取值范圍是0<a6ec8aac122bd4f6e.

          6.解:f(x1)+f(x2)=logax1+logax2=logax1x2,

          x1,x2∈(0,+∞),x1x2≤(6ec8aac122bd4f6e)2(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào)),

          當(dāng)a>1時(shí),有l(wèi)ogax1x2≤loga(6ec8aac122bd4f6e)2,

          6ec8aac122bd4f6elogax1x2≤loga(6ec8aac122bd4f6e),6ec8aac122bd4f6e(logax1+logax2)≤loga6ec8aac122bd4f6e,

          6ec8aac122bd4f6e6ec8aac122bd4f6ef(x1)+f(x2)]≤f(6ec8aac122bd4f6e)(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào))

          當(dāng)0<a<1時(shí),有l(wèi)ogax1x2≥loga(6ec8aac122bd4f6e)2,

          6ec8aac122bd4f6e(logax1+logax2)≥loga6ec8aac122bd4f6e,即6ec8aac122bd4f6ef(x1)+f(x2)]≥f(6ec8aac122bd4f6e)(當(dāng)且僅當(dāng)x1=x2時(shí)取“=”號(hào)).

          7.解:由已知等式得:loga2x+loga2y=(1+2logax)+(1+2logay),即(logax-1)2+(logay-1)2=4,令u=logax,v=logay,k=logaxy,則(u-1)2+(v-1)2=4(uv≥0),k=u+v.在直角坐標(biāo)系uOv內(nèi),圓弧(u-1)2+(v-1)2=4(uv≥0)與平行直線系v=-u+k有公共點(diǎn),分兩類討論.

          (1)當(dāng)u≥0,v≥0時(shí),即a>1時(shí),結(jié)合判別式法與代點(diǎn)法得1+6ec8aac122bd4f6ek≤2(1+6ec8aac122bd4f6e);

          (2)當(dāng)u≤0,v≤0,即0<a<1時(shí),同理得到2(1-6ec8aac122bd4f6e)≤k≤1-6ec8aac122bd4f6e.x綜上,當(dāng)a>1時(shí),logaxy的最大值為2+26ec8aac122bd4f6e,最小值為1+6ec8aac122bd4f6e;當(dāng)0<a<1時(shí),logaxy的最大值為1-6ec8aac122bd4f6e,最小值為2-26ec8aac122bd4f6e.

          8.解:∵2(6ec8aac122bd4f6ex)2+9(6ec8aac122bd4f6ex)+9≤0

          ∴(26ec8aac122bd4f6ex+3)( 6ec8aac122bd4f6ex+3)≤0.

          ∴-3≤6ec8aac122bd4f6ex≤-6ec8aac122bd4f6e.

          6ec8aac122bd4f6e (6ec8aac122bd4f6e)36ec8aac122bd4f6ex6ec8aac122bd4f6e(6ec8aac122bd4f6e)6ec8aac122bd4f6e?

          ∴(6ec8aac122bd4f6e)6ec8aac122bd4f6ex≤(6ec8aac122bd4f6e)3,∴26ec8aac122bd4f6ex≤8

          M={x|x∈[26ec8aac122bd4f6e,8]}

          f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1.

          ∵26ec8aac122bd4f6ex≤8,∴6ec8aac122bd4f6e≤log2x≤3

          ∴當(dāng)log2x=2,即x=4時(shí)ymin=-1;當(dāng)log2x=3,即x=8時(shí),ymax=0.

           

           

           


          同步練習(xí)冊(cè)答案