日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 假設(shè)是中的最小數(shù).則取.可得:.與假設(shè)中“是中的最小數(shù) 矛盾! 查看更多

           

          題目列表(包括答案和解析)

          設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

          (1) 當(dāng)時,試寫出拋物線上的三個定點、、的坐標(biāo),從而使得

          (2)當(dāng)時,若

          求證:;

          (3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:

          “若,則.”

          開展了研究并發(fā)現(xiàn)其為假命題.

          請你就此從以下三個研究方向中任選一個開展研究:

          ① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

          ② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

          ③ 如果補充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

          【解析】第一問利用拋物線的焦點為,設(shè),

          分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

          由拋物線定義得到

          第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

          由拋物線定義得

          第三問中①取時,拋物線的焦點為,

          設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;;

          解:(1)拋物線的焦點為,設(shè)

          分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

           

          因為,所以,

          故可取滿足條件.

          (2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

          由拋物線定義得

             又因為

          ;

          所以.

          (3) ①取時,拋物線的焦點為,

          設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;;

          ,

          .

          ,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)

          ② 設(shè),分別過

          拋物線的準(zhǔn)線的垂線,垂足分別為,

          及拋物線的定義得

          ,即.

          因為上述表達(dá)式與點的縱坐標(biāo)無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

          ,

          ,所以.

          (說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

          ③ 補充條件1:“點的縱坐標(biāo))滿足 ”,即:

          “當(dāng)時,若,且點的縱坐標(biāo))滿足,則”.此命題為真.事實上,設(shè),

          分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,

          及拋物線的定義得,即,則

          ,

          又由,所以,故命題為真.

          補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

          “當(dāng)時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

           

          查看答案和解析>>

          在解決問題:“證明數(shù)集沒有最小數(shù)”時,可用反證法證明.

          假設(shè)中的最小數(shù),則取,可得:,與假設(shè)中“中的最小數(shù)”矛盾! 那么對于問題:“證明數(shù)集沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)中的最大數(shù),則可以找到   ▲   (用表示),由此可知,這與假設(shè)矛盾!所以數(shù)集沒有最大數(shù).

           

          查看答案和解析>>

          在解決問題:“證明數(shù)集沒有最小數(shù)”時,可用反證法證明.
          假設(shè)中的最小數(shù),則取,可得:,與假設(shè)中“中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)中的最大數(shù),則可以找到   ▲  (用表示),由此可知,,這與假設(shè)矛盾!所以數(shù)集沒有最大數(shù).

          查看答案和解析>>

          在解決問題:“證明數(shù)集沒有最小數(shù)”時,可用反證法證明.
          假設(shè)中的最小數(shù),則取,可得:,與假設(shè)中“中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)中的最大數(shù),則可以找到   ▲  (用表示),由此可知,,這與假設(shè)矛盾!所以數(shù)集沒有最大數(shù).

          查看答案和解析>>

          在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時,可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
          a+2
          2
          ,可得:2=
          2+2
          2
          <a′=
          a+2
          2
          a+a
          2
          =a≤3
          ,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對于問題:“證明數(shù)集B={x|x=
          n
          m
          ,m,n∈N*,并且n<m}
          沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
          n0
          m0
          是B中的最大數(shù),則可以找到x'=______(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒有最大數(shù).

          查看答案和解析>>


          同步練習(xí)冊答案