日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          已知函數(shù)

          (1)證明:

          (2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

          (3)設數(shù)列滿足:,設,

          若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當點軸上移動時,求動點的軌跡方程;

          (Ⅱ)過的直線與軌跡交于、兩點,又過作軌跡的切線、,當,求直線的方程.

          查看答案和解析>>

          (本小題滿分14分)設函數(shù)

           (1)求函數(shù)的單調區(qū)間;

           (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿分14分)

          已知,其中是自然常數(shù),

          (1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,;

          (3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          (本小題滿分14分)

          設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

          (I)求數(shù)列的通項公式;

          (II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有

          (III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

          一、選擇題(每小題5分,共40分)

          題 號

          1

          2

          3

          4

          5

          6

          7

          8

          答 案

          B

          A

          D

          C

          C

          A

          B

          C

          二、填空題(每小題5分,其中第一空3分,第二空2分,共30分)

             9.2π; π   10.12π;x=13π    11.

             12.(±2,0);-    13.9;  41      14.12;  (-6,4)

          三、15.(本小題滿分12分)

          解:(1)……………………3分

                            ………………5分

             (2)點P的坐標為………………6分

                  由點P在直線上,即.………………9分

                 

                  ……………………12分

          ∵PA⊥底面ABCD,∴PA⊥CD.

          ∴CD⊥平面PAD……………………………………3分

          ∵AM平面PAD,∴CD⊥AM.

          ∵PC⊥平面AMN,∴PC⊥AM.

          ∴AM⊥平面PCD.

          ∴AM⊥PD.…………………………………………5分

             (II)解:∵AM⊥平面PCD(已證).

          ∴AM⊥PM,AM⊥NM.

          ∴∠PMN為二面角P-AM-N的平面角.…………………………7分

          ∵PN⊥平面AMN,∴PN⊥NM.

          在直角△PCD中,CD=2,PD=2,∴PC=2.

          ∵PA=AD,AM⊥PD,∴M為PD的中點,PM=PD=

          由Rt△PMN∽Rt△PCD,得 ∴.

          …………10分

          即二面角P―AM―N的大小為.(III)解:延長NM,CD交于點E.

          ∵PC⊥平面AMN,∴NE為CE在平面AMN內的射影

          ∴∠CEN為CD(即(CE)與平在AMN所成的角.…………12分

          <legend id="wwbvt"></legend>
              <sup id="wwbvt"><dl id="wwbvt"></dl></sup>

            1. 在Rt△PMN中,

              ∴CD與平面AMN所成的角的大小為…………15分

              17. (I)解:因為{an}是等比數(shù)列a1=1,a2=a.

              a≠0,an=an1.……………………………………2分

              …………5分

              是以a為首項, a2為公比的等比數(shù)列.

              ……………………9分

              (II)甲、乙兩個同學的說法都不正確,理由如下:……………………10分

              解法一:設{bn}的公比為q,則

              a1=1,a2=a, a1, a3, a5,…,a2n1,…是以1為首項,q為公比的等比數(shù)列,

              a2, a4, a6, …, a2n , …是以a為首項,q為公比的等比數(shù)列,…………………………11分

              即{an}為:1,a, q, aq , q2, aq2, ……………………………………………………………12分

              當q=a2時,{an}是等比數(shù)列;

              當q≠a2時,{an}不是等比數(shù)列.…………………………………………………………14分

              解法二:{an}可能是等比數(shù)列,也可能不是等比數(shù)列,舉例說明如下:

              設{bn}的公比為q

              (1)取a=q=1時,an=1(n∈N),此時bn=anan+1=1, {an}、{bn}都是等比數(shù)列.…………11分

              (2)取a=2, q=1時,

              所以{bn}是等比數(shù)列,而{an}不是等比數(shù)列.……………………………………14分

              18.(本小題滿分13分)

                 (I)解:設點P、Q、M的坐標分別是P(x1, 0)、Q(0,y1)、M(x, y) 其中x1≤0,y1≤0,依條件可得……………………………………………………………2分

              又依

              代入(*)式,得……7分

              即點M的軌跡方程為

              (II)解:設M點的坐標是(4cosα,2sinα)其中0≤α<2π

              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>
            2. <sub id="o5kww"></sub>

              S四邊形OAMB=SOAM+SOBM

                1. 僅當時,

                  四邊形OAMB的面積有最大值. …………13分

                  19.(本小題滿分13分)

                  解:以A為原點,BA所在直線為y軸建立如圖所示的平面直角坐標系.

                  設在t時刻甲、乙兩船分別在P(x1, y1) Q (x2,y2).

                  (I)令,P、Q兩點的坐標分別為(45,45),(30,20)

                  .

                  即兩船出發(fā)后3小時時,相距鋰.……………………8分

                  (II)由(I)的解法過程易知:

                  ∴當且僅當t=4時,|PQ|的最小值為20 .………………13分

                  即兩船出發(fā)4小時時,相距20 海里為兩船最近距離.

                  20.(本小題滿分13分)

                     (I)解:取x=1 , y=4則

                      

                  ………………6分

                    (II)設函數(shù)滿足其值域為(1,2)

                  ……………………………………………………9分

                  又任意取x>0, y>0且x≠y則

                  ………………………13分(囿于篇幅,若有其它正確解法請按相應步驟給分.)