日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 答案:(1)取AC的中點H.連MH.則MH//PA.所以MH⊥平面ABCD.過H作HN⊥AD于N.連MN.由三垂線定理可得MN⊥AD.則∠MNH就為所求的二面角的平面角.------2分 查看更多

           

          題目列表(包括答案和解析)

          如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
          精英家教網(wǎng)
          (1)求證:BE=EB1;
          (2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
          注意:在下面橫線上填寫適當內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
          精英家教網(wǎng)
          (1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
          ①∵
           

          ∴EG⊥側(cè)面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
          ②∵
           

          ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.
          ③∵
           

          ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
          ④∵
           

          ∴FG∥AA1,△AA1C∽△FGC,
          ⑤∵
           

          FG=
          1
          2
          AA1=
          1
          2
          BB1
          ,即BE=
          1
          2
          BB1,故BE=EB1

          查看答案和解析>>

          如圖所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC與BD交于E點,BD=2,BC=CD=
          2

          (1)取PD的中點F,求證:PB∥平面AFC;
          (2)求多面體PABCF的體積.

          查看答案和解析>>

          精英家教網(wǎng)如圖,在四棱錐A-BCDE中,底面BCDE為矩形,AB=AC,BC=2,CD=1,并且側(cè)面ABC⊥底面BCDE.
          (1)取CD的中點為F,AE的中點為G,證明:FG∥面ABC;
          (2)試在線段BC上確定點M,使得AE⊥DM,并加以證明.

          查看答案和解析>>

          (12分)

          學校欲在操場邊上一直角三角形空地ABC上種植草坪,并需鋪設一根水管EF(E在AC上,F(xiàn)在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中點,為確保灌溉的效果,鋪設時要求∠EDF=60°,F(xiàn)有兩種方案可供參考。甲方案:取AC的中點E鋪設水管;乙方案:取AB的中點F鋪設水管。

          (1)比較甲乙兩種方案,哪一種方案更合理(EF的長較小的合理);

          (2)學校研究小組通過研究得出:無論D在BC的什么位置,總存在E,F(xiàn)兩點,使△DEF為正三角形。試證明該結(jié)論的正確性。

           

           

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1

          (1)求證:BE=EB1;
          (2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
          注意:在下面橫線上填寫適當內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).

          (1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
          ①∵______
          ∴EG⊥側(cè)面AC1;取AC的中點F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
          ②∵______
          ∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個平面,交側(cè)面AC1于FG.
          ③∵______
          ∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
          ④∵______
          ∴FG∥AA1,△AA1C∽△FGC,
          ⑤∵______
          ,即

          查看答案和解析>>


          同步練習冊答案