日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 而平面.平面.所以∥平面. ---14分 查看更多

           

          題目列表(包括答案和解析)

          已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且

           

          (Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;

          (Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD? (14分)

           

          查看答案和解析>>

          已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
           
          (Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
          (Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD? (14分)

          查看答案和解析>>

          已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,

          E、F分別是AC、AD上的動(dòng)點(diǎn),且

          (Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;

          (Ⅱ)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD? (14分) w.w.w.k.s.5.u.c.o.m        

           

           

           

           

          查看答案和解析>>

          如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

          (Ⅰ)證明:BD⊥PC;

          (Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

          【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">

          是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

          平面PAC,所以.

          (Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,

          所以是直線PD和平面PAC所成的角,從而.

          由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

          在等腰三角形AOD中,

          所以

          故四棱錐的體積為.

          【點(diǎn)評(píng)】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD平面PAC即可,第二問(wèn)由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

           

          查看答案和解析>>

          如圖,在三棱錐中,平面平面,,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

          【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

          而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、, 軸建立直角坐標(biāo)系得,,,

          故平面的法向量,故點(diǎn)B到平面的距離

          第二問(wèn)中,由已知得平面的法向量,平面的法向量

          故二面角的余弦值等于

          解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

          而平面平面,所以平面,

            再由題設(shè)條件知道可以分別以、、, 軸建立直角坐標(biāo)系,得,,,

          ,,故平面的法向量

          ,故點(diǎn)B到平面的距離

          (Ⅱ)由已知得平面的法向量,平面的法向量

          故二面角的余弦值等于

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案