日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又.在△中.由余弦定理得 查看更多

           

          題目列表(包括答案和解析)

          中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

          (Ⅰ)求角的大;

          (Ⅱ)若,求的值.

          【解析】第一問(wèn)中利用依題意,故

          第二問(wèn)中,由題意又由余弦定理知

          ,得到,所以,從而得到結(jié)論。

          (1)依題意,故……………………6分

          (2)由題意又由余弦定理知

          …………………………9分

             故

                     代入

           

          查看答案和解析>>

          中,,分別是角所對(duì)邊的長(zhǎng),,且

          (1)求的面積;

          (2)若,求角C.

          【解析】第一問(wèn)中,由又∵的面積為

          第二問(wèn)中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

          又C為內(nèi)角      ∴

          解:(1) ………………2分

             又∵                   ……………………4分

               ∴的面積為           ……………………6分

          (2)∵a =7  ∴c=5                                  ……………………7分

           由余弦定理得:      

              ∴                                     ……………………9分

          又由余弦定理得:         

          又C為內(nèi)角      ∴                           ……………………12分

          另解:由正弦定理得:  ∴ 又  ∴

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

          (Ⅰ)求角B的大;

          (Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

          【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用

          第一問(wèn)中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

          p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

          根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

          ,又由余弦定理=2acosB,所以cosB=,B=

          第二問(wèn)中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

          =2ksinA+-=-+2ksinA+=-+ (k>1).

          而0<A<,sinA∈(0,1],故當(dāng)sin=1時(shí),m·n取最大值為2k-=3,得k=.

           

          查看答案和解析>>

          在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=.

          (Ⅰ)若△ABC的面積等于,求a、b;

          (Ⅱ)若,求△ABC的面積.

          【解析】第一問(wèn)中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.

          第二問(wèn)中。由于即為即.

          當(dāng)時(shí), , ,   所以當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組,解得,得到。

          解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

          又因?yàn)椤鰽BC的面積等于,所以,得,………1分

          聯(lián)立方程,解方程組得.                 ……………2分

          (Ⅱ)由題意得,

          .             …………2分

          當(dāng)時(shí), , ,           ……1分

          所以        ………………1分

          當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組

          ,解得,;   所以

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案