日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)時(shí)..不符合題意舍去.故. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),其中.

            (1)若處取得極值,求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問(wèn),處取得極值

          所以,,解得,此時(shí),可得求曲線(xiàn)在點(diǎn)

          處的切線(xiàn)方程為:

          第二問(wèn)中,易得的分母大于零,

          ①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

          ②當(dāng)時(shí),由可得,由解得

          第三問(wèn),當(dāng)時(shí)由(2)可知,上處取得最小值,

          當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

           

          查看答案和解析>>

          已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

          (Ⅰ)若 ,是否存在,有?請(qǐng)說(shuō)明理由;

          (Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿(mǎn)足的充要條件;

          (Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.

          【解析】第一問(wèn)中,由,整理后,可得、為整數(shù)不存在、,使等式成立。

          (2)中當(dāng)時(shí),則

          ,其中是大于等于的整數(shù)

          反之當(dāng)時(shí),其中是大于等于的整數(shù),則,

          顯然,其中

          、滿(mǎn)足的充要條件是,其中是大于等于的整數(shù)

          (3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

          當(dāng)時(shí),符合題意。當(dāng)為奇數(shù)時(shí),

          結(jié)合二項(xiàng)式定理得到結(jié)論。

          解(1)由,整理后,可得,為整數(shù)不存在、,使等式成立。

          (2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則

          顯然,其中

          滿(mǎn)足的充要條件是,其中是大于等于的整數(shù)

          (3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

          當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

             由,得

          當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

           

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時(shí),,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

          ,得

          ①當(dāng)時(shí),,上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時(shí),,對(duì)于,,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

          當(dāng)時(shí),

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,

           

          查看答案和解析>>

          高考數(shù)學(xué)考試中共有12道選擇題,每道選擇題都有4個(gè)選項(xiàng),其中有且僅有一個(gè)是正確的.評(píng)分標(biāo)準(zhǔn)規(guī)定:“在每小題給出的上個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,答對(duì)得5分,不答或答錯(cuò)得0分”.某考生每道選擇都選出一個(gè)答案,能確定其中有8道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個(gè)選項(xiàng)錯(cuò)誤的,有一道題可能判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因不理解題意只能亂猜.試求出該考生的選擇題:
          (1)得40分的概率;
          (2)得多少分的概率最大?
          (3)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

          查看答案和解析>>

          若連續(xù)且不恒等于的零的函數(shù)f(x)滿(mǎn)足f′(x)=3x2-x(x∈R),試寫(xiě)出一個(gè)符合題意的函數(shù)f(x)=
           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案