日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (理) 對(duì)于三次函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2-(m+1)x-m-2的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸的負(fù)半軸,點(diǎn)B在x軸的正半軸,與y軸交于點(diǎn)C,且OB=3OA.
          (1)求這個(gè)二次函數(shù)的解析式;
          (2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,過(guò)點(diǎn)A的直線(xiàn)y=
          1
          2
          x+
          1
          2
          與拋物線(xiàn)交于點(diǎn)E.問(wèn):在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在這樣的點(diǎn)F,使得△ABE與以B、D、F為頂點(diǎn)的三角形相似,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)點(diǎn)G(x,1)在拋物線(xiàn)上,求出過(guò)點(diǎn)A、B、G的圓的圓心的坐標(biāo).

          查看答案和解析>>

          已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2-(m+1)x-m-2的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸的負(fù)半軸,點(diǎn)B在x軸的正半軸,與y軸交于點(diǎn)C,且OB=3OA.
          (1)求這個(gè)二次函數(shù)的解析式;
          (2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,過(guò)點(diǎn)A的直線(xiàn)y=
          1
          2
          x+
          1
          2
          與拋物線(xiàn)交于點(diǎn)E.問(wèn):在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在這樣的點(diǎn)F,使得△ABE與以B、D、F為頂點(diǎn)的三角形相似,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)點(diǎn)G(x,1)在拋物線(xiàn)上,求出過(guò)點(diǎn)A、B、G的圓的圓心的坐標(biāo).

          查看答案和解析>>

          已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2-(m+1)x-m-2的圖象與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸的負(fù)半軸,點(diǎn)B在x軸的正半軸,與y軸交于點(diǎn)C,且OB=3OA.
          (1)求這個(gè)二次函數(shù)的解析式;
          (2)設(shè)拋物線(xiàn)的頂點(diǎn)為D,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn)E.問(wèn):在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在這樣的點(diǎn)F,使得△ABE與以B、D、F為頂點(diǎn)的三角形相似,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
          (3)點(diǎn)G(x,1)在拋物線(xiàn)上,求出過(guò)點(diǎn)A、B、G的圓的圓心的坐標(biāo).

          查看答案和解析>>

          已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)    順次為一次函數(shù)圖象上高考資源網(wǎng)的點(diǎn),   點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)    順次為x軸正半軸上高考資源網(wǎng)的點(diǎn),其中x1=a(0<a<1),    對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成以

              Bn為頂點(diǎn)的等腰三角形。

          ⑴求{yn}的通項(xiàng)公式,且證明{yn}是等差數(shù)列;

          ⑵試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項(xiàng)公式;

          ⑶在上高考資源網(wǎng)述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;

          若不存在, 請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          (本小題滿(mǎn)分12分)
          已知點(diǎn)列、、…、(n∈N)順次為一次函數(shù)圖像上的點(diǎn),點(diǎn)列、、…、(n∈N)順次為x軸正半軸上的點(diǎn),其中(0<a<1),對(duì)于任意n∈N,點(diǎn)、構(gòu)成一個(gè)頂角的頂點(diǎn)為的等腰三角形。

          (1)數(shù)列的通項(xiàng)公式,并證明是等差數(shù)列;
          (2)證明為常數(shù),并求出數(shù)列的通項(xiàng)公式;
          (3)上述等腰三角形中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          一、1―5DCDDD       6―10CBADC   11―12DA

            1. 20080428

              三、17、解:

              (1)

                    

                     ∵相鄰兩對(duì)稱(chēng)軸的距離為

                      

                 (2)

                     ,

                     又

                     若對(duì)任意,恒有

                     解得

              18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,且P(A)=P(B)=P(C)=.

              (Ⅰ)至少有1人面試合格的概率是

              (Ⅱ)的可能取值為0,1,2,3.

                   

                            =

                            =

                   

                            =

                            =

                   

                   

              所以, 的分布列是

              0

              1

              2

              3

              P

              的期望

              (文)解  基本事件共有6×6=36個(gè).  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個(gè).所以,是5的倍數(shù)的概率是 .

              (Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

              共20個(gè),所以,是3的倍數(shù)的概率是.

              (Ⅲ)此事件的對(duì)立事件是都不是5或6,其基本事件有個(gè),所以,中至少有一個(gè)5或6的概率是.

              19、證明:(1)∵

                                                       

              (2)令中點(diǎn)為,中點(diǎn)為,連結(jié)、

                   ∵的中位線(xiàn)

                            

              又∵

                  

                   ∴

                   ∵為正

                     

                   ∴

                   又∵,

               ∴四邊形為平行四邊形   

                

              20、解:(1)由,得:

                          

                   (2)由             ①

                        得         ②

                    由②―①,得  

                     即:

                   

                    由于數(shù)列各項(xiàng)均為正數(shù),

                       即 

                    數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,

                    數(shù)列的通項(xiàng)公式是  

                  (3)由,得:

                    

                      

                      

              21、解(1)由題意的中垂線(xiàn)方程分別為

              于是圓心坐標(biāo)為

              =,即   所以

              于是 ,所以  即

              (2)假設(shè)相切, 則

              , 這與矛盾.

              故直線(xiàn)不能與圓相切.

              22、(理)

              (文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗(yàn)得:這時(shí)都是極值點(diǎn).(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

              x

              (-∞,-)

              (-,1)

              (1,+∞)

              f ′(x)

              ∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當(dāng)x=-時(shí),f (x)有極大值,f (-)=;當(dāng)x=1時(shí),f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

              ∴  ∴  ∴   或∴ 

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>