日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 甲.乙.丙三人參加了一家公司的招聘面試.面試合格者可正式簽約.甲表示只要面試合格就簽約.乙.丙則約定:兩人面試都合格就一同簽約.否則兩人都不簽約.設(shè)每人面試合格的概率都是.且面試是否合格互不影響.求:(Ⅰ)至少有1人面試合格的概率; 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)

              某甲有一個放有3個紅球、2個白球、1個黃球共6個球的箱子;某乙也有一個放有3個紅球、2個白球、1個黃球共6個球的箱子.

          (Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個球,直到取到紅球為止,求甲取球次數(shù)的數(shù)學(xué)期望;

          (Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時為甲勝,異色時為乙勝,這個游戲規(guī)則公平嗎?請說明理由.

          查看答案和解析>>

          (本小題滿分12分)
          計算機考試分理論考試與上機操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”則計算機考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中合格的概率分別為,;在上機操作考試中合格的概率分別為,.所有考試是否合格相互之間沒有影響.
          (Ⅰ)甲、乙、丙三人在同一次計算機考試中誰獲得“合格證書”可能性最大?
          (Ⅱ)求這三人計算機考試都獲得“合格證書”的概率;
          (Ⅲ)用表示甲、乙、丙三人在理論考核中合格人數(shù),求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          (本小題滿分12分)甲有一個裝有個紅球、個黑球的箱子,乙有一個裝有個紅球、個黑球的箱子,兩人各自從自己的箱子里任取一球,并約定:所取兩球同色時甲勝,異色時乙勝(,,).
          (Ⅰ)當,時,求甲獲勝的概率;
          (Ⅱ)當,時,規(guī)定:甲取紅球獲勝得3分;取黑球獲勝得1分;甲負得0分.求甲的得分期望達到最大時的值;
          (Ⅲ)當時,這個游戲規(guī)則公平嗎?請說明理由.

          查看答案和解析>>

          (本小題滿分12分)
          甲、乙二名射擊運動員參加今年深圳舉行的第二十六屆世界大學(xué)生夏季運動會的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤恚▎挝唬涵h(huán)):


          5
          6
          9
          10

          6
          7
          8
          9
          (1)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
          (2)現(xiàn)要從中選派一人參加決賽,你認為選派哪位運動員參加比較合適?請說明理由.

          查看答案和解析>>

          (本小題滿分12分)

          甲、乙二名射擊運動員參加今年深圳舉行的第二十六屆世界大學(xué)生夏季運動會的預(yù)選賽,他們分別射擊了4次,成績?nèi)缦卤恚▎挝唬涵h(huán)):

          5

          6

          9

          10

          6

          7

          8

          9

          (1)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;

          (2)現(xiàn)要從中選派一人參加決賽,你認為選派哪位運動員參加比較合適?請說明理由.

           

          查看答案和解析>>

          一、1―5DCDDD       6―10CBADC   11―12DA

            1. 20080428

              三、17、解:

              (1)

                    

                     ∵相鄰兩對稱軸的距離為

                      

                 (2)

                     ,

                     又

                     若對任意,恒有

                     解得

              18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨立,且P(A)=P(B)=P(C)=.

              (Ⅰ)至少有1人面試合格的概率是

              (Ⅱ)的可能取值為0,1,2,3.

                   

                            =

                            =

                   

                            =

                            =

                   

                   

              所以, 的分布列是

              0

              1

              2

              3

              P

              的期望

              (文)解  基本事件共有6×6=36個.  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個.所以,是5的倍數(shù)的概率是 .

              (Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

              共20個,所以,是3的倍數(shù)的概率是.

              (Ⅲ)此事件的對立事件是都不是5或6,其基本事件有個,所以,中至少有一個5或6的概率是.

              19、證明:(1)∵

                                                       

              (2)令中點為中點為,連結(jié)、

                   ∵的中位線

                            

              又∵

                  

                   ∴

                   ∵為正

                     

                   ∴

                   又∵

               ∴四邊形為平行四邊形   

                

              20、解:(1)由,得:

                          

                   (2)由             ①

                        得         ②

                    由②―①,得  

                     即:

                   

                    由于數(shù)列各項均為正數(shù),

                       即 

                    數(shù)列是首項為,公差為的等差數(shù)列,

                    數(shù)列的通項公式是  

                  (3)由,得:

                    

                      

                      

              21、解(1)由題意的中垂線方程分別為,

              于是圓心坐標為

              =,即   所以 ,

              于是 ,所以  即

              (2)假設(shè)相切, 則,

              , 這與矛盾.

              故直線不能與圓相切.

              22、(理)

              (文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗得:這時都是極值點.(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

              x

              (-∞,-)

              (-,1)

              (1,+∞)

              f ′(x)

              ∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當x=-時,f (x)有極大值,f (-)=;當x=1時,f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

              ∴  ∴  ∴   或∴ 

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>