日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A. B. C.[2.3] D. 20080428 查看更多

           

          題目列表(包括答案和解析)

          已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,則μ的取值范圍是( )
          A.
          B.
          C.[2,3]
          D.[3,4]

          查看答案和解析>>

          已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是( )
          A.
          B.
          C.[2,3]
          D.[3,4]

          查看答案和解析>>

          設(shè)P為曲線C:y=x2+2x+3上的點,且曲線C在點P處切線傾斜角的取值范圍為,則點P縱坐標的取值范圍為( )
          A.
          B.
          C.[2,3]
          D.[2,6]

          查看答案和解析>>

          對于函數(shù)f(x)和g(x),設(shè)α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α-β|≤1,則稱f(x)與g(x)互為“零點關(guān)聯(lián)函數(shù)”.若函數(shù)f(x)=ex-1+x-2與g(x)=x2-ax-a+3互為“零點關(guān)聯(lián)函數(shù)”,則實數(shù)a的取值范圍為( )
          A.
          B.
          C.[2,3]
          D.[2,4]

          查看答案和解析>>

          設(shè)為雙曲線的左、右焦點,P為雙曲線右支上任一點,若的最小值為8a,則雙曲線離心率e的取值范圍是                                 

          A.                      B.                      C.[2,3]                    D.

          查看答案和解析>>

          一、1―5DCDDD       6―10CBADC   11―12DA

            1. 20080428

              三、17、解:

              (1)

                    

                     ∵相鄰兩對稱軸的距離為

                      

                 (2)

                     ,

                     又

                     若對任意,恒有

                     解得

              18、(理)解  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨立,且P(A)=P(B)=P(C)=.

              (Ⅰ)至少有1人面試合格的概率是

              (Ⅱ)的可能取值為0,1,2,3.

                   

                            =

                            =

                   

                            =

                            =

                   

                   

              所以, 的分布列是

              0

              1

              2

              3

              P

              的期望

              (文)解  基本事件共有6×6=36個.  (Ⅰ) 是5的倍數(shù)包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7個.所以,是5的倍數(shù)的概率是 .

              (Ⅱ)是3的倍數(shù)包含的基本事件(如圖)

              共20個,所以,是3的倍數(shù)的概率是.

              (Ⅲ)此事件的對立事件是都不是5或6,其基本事件有個,所以,中至少有一個5或6的概率是.

              19、證明:(1)∵

                                                       

              (2)令中點為,中點為,連結(jié)、

                   ∵的中位線

                            

              又∵

                  

                   ∴

                   ∵為正

                     

                   ∴

                   又∵,

               ∴四邊形為平行四邊形   

                

              20、解:(1)由,得:

                          

                   (2)由             ①

                        得         ②

                    由②―①,得  

                     即:

                   

                    由于數(shù)列各項均為正數(shù),

                       即 

                    數(shù)列是首項為,公差為的等差數(shù)列,

                    數(shù)列的通項公式是  

                  (3)由,得:

                    

                      

                      

              21、解(1)由題意的中垂線方程分別為,

              于是圓心坐標為

              =,即   所以 ,

              于是 ,所以  即

              (2)假設(shè)相切, 則

              , 這與矛盾.

              故直線不能與圓相切.

              22、(理)

              (文)(1)f ′(x)=3x2+2a x+b=0.由題設(shè),x=1,x=-為f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.經(jīng)檢驗得:這時都是極值點.(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

              x

              (-∞,-)

              (-,1)

              (1,+∞)

              f ′(x)

              ∴  f (x)的遞增區(qū)間為(-∞,-),及(1,+∞),遞減區(qū)間為(-,1).當x=-時,f (x)有極大值,f (-)=;當x=1時,f (x)有極小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上遞增,在(-,1)遞減.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值為c+2.

              ∴  ∴  ∴   或∴ 

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>