日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 內(nèi)的任意常數(shù)a.是否存在與a 有關(guān)的正常數(shù).使得成立?如果存在.求出一個符合條件的,否則說明理由. 查看更多

           

          題目列表(包括答案和解析)

          如果對于函數(shù)f(x)的定義域內(nèi)任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
          (1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”;
          (2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對于任意
          的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
          12
          成立.
          (3)設(shè)a、m為實常數(shù),m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數(shù)”,試估計a的取值范圍(用m表示,不必證明).

          查看答案和解析>>

          如果對于函數(shù)f(x)的定義域內(nèi)任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
          (1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”;
          (2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對于任意
          的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤數(shù)學(xué)公式成立.
          (3)設(shè)a、m為實常數(shù),m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數(shù)”,試估計a的取值范圍(用m表示,不必證明).

          查看答案和解析>>

          如果對于函數(shù)f(x)的定義域內(nèi)任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
          (1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”;
          (2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對于任意
          的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
          1
          2
          成立.
          (3)設(shè)a、m為實常數(shù),m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數(shù)”,試估計a的取值范圍(用m表示,不必證明).

          查看答案和解析>>

          如果對于函數(shù)f(x)的定義域內(nèi)任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
          (1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”;
          (2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對于任意
          的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.
          (3)設(shè)a、m為實常數(shù),m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數(shù)”,試估計a的取值范圍(用m表示,不必證明).

          查看答案和解析>>

          已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
          (1)試判斷函數(shù)f(x)=數(shù)學(xué)公式是否為(3,+∞)上的周期為1的2級類增周期函數(shù)?并說明理由;
          (2)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實數(shù)a的取值范圍;
          (3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
          (Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時,f(x)=2x,求實數(shù)m的取值范圍.
          (Ⅱ)已知當(dāng)x∈[0,4]時,函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域為一個閉區(qū)間,求實數(shù)m的取值范圍.

          查看答案和解析>>

           

          一、選擇題(每小題5 分,共40 分)

          DCABD  ABC

          二、填空題(每小題5 分,共35分)

          9.     10.     11.91    12.②④

          13.     14.(i)(2分)    (ii)(3分)

          15.(i)(3分);    (ii) (2分)

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          20090401

          ,2 分

          8,3 分

          解得;……………………4分分

          (2)

           ………………6分

          …………8分

          由余弦定理得

           ……………………10分

           …………………………12分

          17.解:(1)= 1 表示經(jīng)過操作以后A 袋中只有一個紅球,有兩種情形出現(xiàn)

          ①先從A 中取出1 紅和1 白,再從B 中取一白到A 中

          ②先從A 中取出2 紅球,再從B 中取一紅球到A 中

          …………………………(5分)

          (2)同(1)中計算方法可知:

          于是的概率分別列

          0

          1

          2

          3

          P

           

          E=……………………12分

          18.解:(1)AB//平面DEF. 在△ABC 中,

          ∵E、F分別是AC、BC 上的點,且滿足

          ∴AB//EF.

            1. ∴AB//平面DEF. …………3 分

              (2)過D點作DG⊥AC 于G,連結(jié)BG,

              ∵AD⊥CD, BD⊥CD,

              ∴∠ADB 是二面角A―CD―B 的平面角.

              ∴∠ADB = 90°, 即BD⊥AD.

              ∴BD⊥平面ADC.

              ∴BD⊥AC.

              ∴AC⊥平面BGD.

              ∴BG⊥AC .

              ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

              在Rt△ADC 中,AD = a,DC = a,AC = 2a,

              在Rt

              即二面角B―AC―D的大小為……………………8分

              (2)∵AB//EF,

              ∴∠DEF(或其補(bǔ)角)是異面直線AB 與DE 所成的角. ………………9 分

              ∵AB =,

              ∴EF=  ak .

              又DC = a,CE = kCA = 2ak,

              ∴DF= DE =

              ………………4分

              ∴cos∠DEF=………………11分

              …………………………12分

              19.解:(1)依題意建立數(shù)學(xué)模型,設(shè)第n 次服藥后,藥在體內(nèi)的殘留量為an(毫克)

              a1 = 220,a2 =220×1.4 ……………………2 分

              a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

              (2)由an = 220 + 0.4an―1 (n≥2 ),

              可得

              所以()是一個等比數(shù)列,

              不會產(chǎn)生副作用……………………13分

              20.解:(1)由條件知:

              ……………………2分

              b=1,

              ∴橢圓C的方程為:……………………4分

              (2)依條件有:………………5分

              …………7分

              ,

              ………………7分

              …………………………9分

              由弦長公式得

                  得

              =

               …………………………13分

              21.解:(1)當(dāng)

              上單調(diào)遞增,

              ……………………5分

              (2)(1),

              需求一個,使(1)成立,只要求出

              的最小值,

              滿足

              上↓

              ↑,

              只需證明內(nèi)成立即可,

              為增函數(shù)

              ,故存在與a有關(guān)的正常數(shù)使(1)成立。13分