日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng) 有最小值等價于 查看更多

           

          題目列表(包括答案和解析)

          已知

          (1)求函數(shù)上的最小值

          (2)對一切的恒成立,求實數(shù)a的取值范圍

          (3)證明對一切,都有成立

          【解析】第一問中利用

          當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

          第二問中,,則設(shè)

          ,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立, 

          第三問中問題等價于證明,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

          解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,

                           …………4分

          (2),則設(shè),

          單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

          (3)問題等價于證明,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式;

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于

          當(dāng)時,;當(dāng)時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時,,成立.

          假設(shè)當(dāng)時,不等式成立,

          當(dāng)時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證 

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          在等差數(shù)列中,,,其中是數(shù)列的前項之和,曲線的方程是,直線的方程是

          求數(shù)列的通項公式;

          當(dāng)直線與曲線相交于不同的兩點,時,令,

          的最小值;

          對于直線和直線外的一點P,用“上的點與點P距離的最小值”定義點P到直線的距離與原有的點到直線距離的概念是等價的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個橢圓,求出該橢圓與直線的“距離”.

          查看答案和解析>>

          在等差數(shù)列中,,,其中是數(shù)列的前項之和,曲線的方程是,直線的方程是
          (1)      求數(shù)列的通項公式;
          (2)   當(dāng)直線與曲線相交于不同的兩點,時,令,
          的最小值;
          (3)   對于直線和直線外的一點P,用“上的點與點P距離的最小值”定義點P到直線的距離與原有的點到直線距離的概念是等價的,若曲線與直線不相交,試以類似的方式給出一條曲線與直線間“距離”的定義,并依照給出的定義,在中自行選定一個橢圓,求出該橢圓與直線的“距離”.

          查看答案和解析>>

          在等差數(shù)列{an}中,a4S4=-14,S5-a5=-14,其中Sn是數(shù)列{an}的前n項之和,曲線Cn的方程是+=1,直線l的方程是y=x+3.
          (1)求數(shù)列{an}的通項公式;   
          (2)判斷Cn與l的位置關(guān)系;
          (3)當(dāng)直線l與曲線Cn相交于不同的兩點An,Bn時,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
          (4)對于直線l和直線外的一點P,用“l(fā)上的點與點P距離的最小值”定義點P到直線l的距離與原有的點到直線距離的概念是等價的.若曲線Cn與直線l不相交,試以類似的方式給出一條曲線Cn與直線l間“距離”的定義,并依照給出的定義,在Cn中自行選定一個橢圓,求出該橢圓與直線l的“距離”.

          查看答案和解析>>


          同步練習(xí)冊答案