日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又因?yàn)?所以.代入②式并整理.得. 查看更多

           

          題目列表(包括答案和解析)

          已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓C;其長(zhǎng)軸長(zhǎng)等于4,離心率為

          (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

          (Ⅱ)若點(diǎn)(0,1), 問(wèn)是否存在直線(xiàn)與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

          【解析】本試題主要考查了橢圓的方程的求解,直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。

          第一問(wèn)中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

          則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標(biāo)準(zhǔn)方程為

          第二問(wèn)中,

          假設(shè)存在這樣的直線(xiàn),設(shè),MN的中點(diǎn)為

           因?yàn)閨ME|=|NE|所以MNEF所以

          (i)其中若時(shí),則K=0,顯然直線(xiàn)符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得

          代入1,2式中得到范圍。

          (Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

          則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標(biāo)準(zhǔn)方程為

           (Ⅱ) 假設(shè)存在這樣的直線(xiàn),設(shè),MN的中點(diǎn)為

           因?yàn)閨ME|=|NE|所以MNEF所以

          (i)其中若時(shí),則K=0,顯然直線(xiàn)符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得……②  ……………………9分

          代入①式得,解得………………………………………12分

          代入②式得,得

          綜上(i)(ii)可知,存在這樣的直線(xiàn),其斜率k的取值范圍是

           

          查看答案和解析>>

          已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線(xiàn)的焦點(diǎn)為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線(xiàn)l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線(xiàn)l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線(xiàn)的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線(xiàn)l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線(xiàn)OC斜率為1,由此設(shè)直線(xiàn)l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          ………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時(shí),直線(xiàn)l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時(shí),直線(xiàn)l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          已知數(shù)列的前項(xiàng)和為,且 (N*),其中

          (Ⅰ) 求的通項(xiàng)公式;

          (Ⅱ) 設(shè) (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當(dāng)時(shí),由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對(duì)偶式)設(shè)

          .又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                              ………10分

          證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

             ②假設(shè)時(shí),命題成立,即,

             則當(dāng)時(shí),

              即

          故當(dāng)時(shí),命題成立.

          綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以

          從而.

          也即

           

          查看答案和解析>>

          設(shè)點(diǎn)是拋物線(xiàn)的焦點(diǎn),是拋物線(xiàn)上的個(gè)不同的點(diǎn)().

          (1) 當(dāng)時(shí),試寫(xiě)出拋物線(xiàn)上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得

          ;

          (2)當(dāng)時(shí),若,

          求證:

          (3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

          “若,則.”

          開(kāi)展了研究并發(fā)現(xiàn)其為假命題.

          請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:

          ① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

          ② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);

          ③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

          【解析】第一問(wèn)利用拋物線(xiàn)的焦點(diǎn)為,設(shè),

          分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為.

          由拋物線(xiàn)定義得到

          第二問(wèn)設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.

          由拋物線(xiàn)定義得

          第三問(wèn)中①取時(shí),拋物線(xiàn)的焦點(diǎn)為,

          設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.由拋物線(xiàn)定義得

          ,

          ,不妨取;;

          解:(1)拋物線(xiàn)的焦點(diǎn)為,設(shè),

          分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為.由拋物線(xiàn)定義得

           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以

          故可取滿(mǎn)足條件.

          (2)設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.

          由拋物線(xiàn)定義得

             又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

          ;

          所以.

          (3) ①取時(shí),拋物線(xiàn)的焦點(diǎn)為,

          設(shè),分別過(guò)作拋物線(xiàn)的準(zhǔn)線(xiàn)垂線(xiàn),垂足分別為.由拋物線(xiàn)定義得

          ,

          ,不妨取;;,

          .

          ,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

          ② 設(shè),分別過(guò)

          拋物線(xiàn)的準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為,

          及拋物線(xiàn)的定義得

          ,即.

          因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

          ,所以.

          (說(shuō)明:本質(zhì)上只需構(gòu)造滿(mǎn)足條件且的一組個(gè)不同的點(diǎn),均為反例.)

          ③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿(mǎn)足 ”,即:

          “當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿(mǎn)足,則”.此命題為真.事實(shí)上,設(shè),

          分別過(guò)作拋物線(xiàn)準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為,由,

          及拋物線(xiàn)的定義得,即,則

          ,

          又由,所以,故命題為真.

          補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱(chēng)”,即:

          “當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱(chēng),則”.此命題為真.(證略)

           

          查看答案和解析>>

          設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿(mǎn)足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對(duì)如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

          于是,,

              

          所以,當(dāng),且時(shí),取得最大值1。

          (3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          得定義知,,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對(duì)數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對(duì)于所有的的最大值為

           

          查看答案和解析>>

          一、選擇題

          1-5 BBAB 文B理A  6-10 ADCBC 11-12文B理D A

          6.A 提示:設(shè),則表示點(diǎn)與點(diǎn)(0,0)連線(xiàn)的斜率.當(dāng)該直線(xiàn)kx-y=0與圓相切時(shí),取得最大值與最小值.圓心(2,0),由=1,解得,∴的最大值為.11.(文) B 

          11.(文) A       提示:拋物線(xiàn)的焦點(diǎn)為F(1,0),作PA垂直于準(zhǔn)線(xiàn)x=-1,則

          |PA|=|PF|,當(dāng)A、P、Q在同一條直線(xiàn)上時(shí),

          |PF|+|PQ|=|PA|+|PQ|=|AQ|,

          此時(shí),點(diǎn)P到Q點(diǎn)距離與拋物線(xiàn)焦點(diǎn)距離之和取得最小值,

          P點(diǎn)的縱坐標(biāo)為-1,有1=4x,x=,此時(shí)P點(diǎn)坐標(biāo)為(,-1),故選A。

          11.(理) B提示:設(shè)

          。

          12.A    提示:如右圖所示,設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),由拋物線(xiàn)以F2為頂點(diǎn),F1為焦點(diǎn),可得其準(zhǔn)線(xiàn)的方

          程為x=3c, 根據(jù)拋物線(xiàn)的定義可得|PF1|=|PR|=3c-x0,又由點(diǎn)P為雙曲線(xiàn)上的點(diǎn),根據(jù)雙曲線(xiàn)的第二定義可得=e, 即得|PF2|=ex0-a, 由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=, 故應(yīng)選A.

          二、填空題:13-16文    3   35

           

           

           

           

           

           

          九、實(shí)戰(zhàn)演習(xí)

          一  選擇題

          1.與圓相切,且在兩坐標(biāo)軸上截距相等的直線(xiàn)共有 (   )

          A.2條          B.3條         C.4條        D.6條

          1.C提示: 在兩坐標(biāo)軸上截距相等的直線(xiàn)有兩類(lèi):①直線(xiàn)過(guò)原點(diǎn)時(shí),有兩條與已知圓相切;②直線(xiàn)不過(guò)原點(diǎn)時(shí),設(shè)其方程為,也有兩條與已知圓相切.易知①、②中四條切線(xiàn)互不相同,故選C.

          2.在中,三內(nèi)角所對(duì)的邊是成等差數(shù)列,那么直線(xiàn)與直線(xiàn)的位置關(guān)系是  (        )

          A.平行        B.重合       C.垂直      D.相交但不垂直

          2.B提示:成等差數(shù)列,

          ,

          ,故兩直線(xiàn)重合。選B。

          3.已知函數(shù),集合,集合,則集合的面積是      

          A.             B.            C.            D.

          3.D提示: 集合即為:,集合即為: ,其面積等于半圓面積。

          4.(文)已知直線(xiàn)m:交x軸于M,E是直線(xiàn)m上的點(diǎn),N(1,0),又P在線(xiàn)段EN的垂直平分線(xiàn)上,且,則動(dòng)點(diǎn)P的軌跡是(  )

          A.圓   B.橢圓   C.雙曲線(xiàn)    D.拋物線(xiàn)

          4.(文)D.

          4.(理)已知P在雙曲線(xiàn)上變動(dòng),O是坐標(biāo)原點(diǎn),F(xiàn)是雙曲線(xiàn)的右焦點(diǎn),則的重心G的軌跡方程是(  )

          A.    B.

          C.     D.

          4.(理)C.提示:雙曲線(xiàn)焦點(diǎn)坐標(biāo)是F(6,0).設(shè)雙曲線(xiàn)上任一點(diǎn)P(x0,y0), 的重心G(x,y),則由重心公式,

          ,解得,代入,得為所求.

          5.已知是三角形的一個(gè)內(nèi)角,且,則方程表示(  。

          A.焦點(diǎn)在軸上的橢圓     B.焦點(diǎn)在軸上的橢圓

          C.焦點(diǎn)在軸上的雙曲線(xiàn)    D.焦點(diǎn)在軸上的雙曲線(xiàn)

          5.B提示:由,又是三角形的一個(gè)內(nèi)角,故,

          再由

          結(jié)合解得

          。

          故方程表示焦點(diǎn)在軸上的橢圓。選B。

          或者結(jié)合單位圓中的三角函數(shù)線(xiàn)直接斷定。

          6.過(guò)拋物線(xiàn)的焦點(diǎn)作一條直線(xiàn)與拋物線(xiàn)相交于A、B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線(xiàn)                        。    )

          A.有且僅有一條     B.有且僅有兩條      C.有無(wú)窮多條      D.不存在

          6.B提示:該拋物線(xiàn)的通徑長(zhǎng)為4,而這樣的弦AB的長(zhǎng)為,故這樣的直線(xiàn)有且僅有兩條。選B。

          或者(1)當(dāng)該直線(xiàn)的斜率不存在時(shí),它們的橫坐標(biāo)之和等于2;

          (2)當(dāng)該直線(xiàn)的斜率存在時(shí),設(shè)該直線(xiàn)方程為,代入拋物線(xiàn)方程得

          ,由。故這樣的直線(xiàn)有且僅有兩條。

          7.一個(gè)橢圓中心在原點(diǎn),焦點(diǎn)軸上,(2,)是橢圓上一點(diǎn),且成等差數(shù)列,則橢圓方程為           。ā  。

          A.     B.    C.     D.

          7.A提示:設(shè)橢圓方程為,由成等差數(shù)列知,從而,故橢圓方程為,將P點(diǎn)的坐標(biāo)代入得,故所求的橢圓方程為。選A。

          8.以A(4,3,1),B(7,1,2),C(5,2,3)為頂點(diǎn)的三角形形狀為(  )

          A .直角三角形  B. 等腰三角形   C.非等腰三角形三角形   D.等邊三角形

          8. B.提示:由兩點(diǎn)間距離公式,得,,故選B.

          9. 若直線(xiàn)與雙曲線(xiàn)的右支交于不同的兩點(diǎn),則k的取值范圍是(。

          A.,   B.,     C.,   D.,

          9.D提示:特別注意的題目。將直線(xiàn)代入雙曲線(xiàn)方程

          若直線(xiàn)與雙曲線(xiàn)的右支交于不同的兩點(diǎn),則應(yīng)滿(mǎn)足

          。選D。

          10. (文)設(shè)離心率為e的雙曲線(xiàn)的右焦點(diǎn)為F,直線(xiàn)過(guò)點(diǎn)F且斜率為K,則直線(xiàn)與雙曲線(xiàn)C左、右支都有相交的充要條件是( 。

          A.      B. 

          C.      D.

          10. (理)已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線(xiàn)上存在點(diǎn)P,使|PM|-|PN|=6,則稱(chēng)該直線(xiàn)為“B型直線(xiàn)”。給出下列直線(xiàn)①。其中屬于“B型直線(xiàn)”的是(      )

          A、①③    B、①②     C、③④     D、①④

          10. (文)C  提示:由已知設(shè)漸近線(xiàn)的斜率為于是

          ,即故選C;

          10. (理)B 提示:理解為以M、N為焦點(diǎn)的雙曲線(xiàn),則c=5, 又|PM|-|PN|=6,則a=3,b=4,幾何意義是雙曲線(xiàn)的右支,所謂“B型直線(xiàn)”即直線(xiàn)與雙曲線(xiàn)的右支有交點(diǎn),又漸近線(xiàn)為:,逐一分析,只有①②與雙曲線(xiàn)右支有交點(diǎn),故選B;

          11.已知雙曲線(xiàn)的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線(xiàn)上,且,則此雙曲線(xiàn)的離心率的最大值為   (   )

          A、      B、     C、     D、2

          11.B提示:由    又

          故選B項(xiàng)。

          12.若AB過(guò)橢圓 + =1 中心的弦, F1為橢圓的焦點(diǎn), 則△F1AB面積的最大值為(    ) 

          A. 6   B.12   C.24   D.48

          12.B提示:設(shè)AB的方程為,代入橢圓方程得。選B。

          二  填空題

          13.橢圓M:=1 (a>b>0) 的左、右焦點(diǎn)分別為F1、F2,P為橢圓M上任一點(diǎn),且 的最大值的取值范圍是[2c2,3c2],其中. 則橢圓M的離心率e的取值范圍是         

          13.

          14. 1.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國(guó))發(fā)射了兩顆“銥星”系統(tǒng)通信衛(wèi)星.衛(wèi)星運(yùn)行的軌道是以地球中心為一個(gè)焦點(diǎn)的橢圓,近地點(diǎn)為m km,遠(yuǎn)地點(diǎn)為  n km,地球的半徑為R km,則通信衛(wèi)星運(yùn)行軌道的短軸長(zhǎng)等于         

                     

          14. 2提示:  c=m+R, +c=n+R,

          c=,b=2=2.

          15. 已知與曲線(xiàn)C:x2+y2-2x-2y+1=0相切的直線(xiàn)交x、y軸于A、B兩點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b,a>2,b>2,線(xiàn)段AB中點(diǎn)的軌跡方程是                               。

          15. 提示:滿(mǎn)足(a-2)(b-2)=2。設(shè)AB的中點(diǎn)坐標(biāo)為(x,y), 則a=2x,b=2y, 代入①得(2x-2)(2y-2)=2, 即(x-1)(y-1)= (x>1,y>1)。

              16.以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題中

          ①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);

          ②過(guò)定圓C上一定點(diǎn)A作該圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若則動(dòng)點(diǎn)的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;

          ④雙曲線(xiàn)有相同的焦點(diǎn).

          其中真命題的序號(hào)為                 (寫(xiě)出所有真命題的序號(hào))

          16. ③、④

          三  解答題(74分)

          17. (本小題滿(mǎn)分12分)已知,直線(xiàn)和圓

          (1)求直線(xiàn)斜率的取值范圍;

          (2)直線(xiàn)能否將圓分割成弧長(zhǎng)的比值為的兩段圓?為什么?

          解析:(1)直線(xiàn)的方程可化為,直線(xiàn)的斜率,因?yàn)?sub>,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

          所以,斜率的取值范圍是

          (2)不能.由(1)知的方程為,其中

          的圓心為,半徑.圓心到直線(xiàn)的距離

          ,得,即.從而,若與圓相交,則圓截直線(xiàn)所得的弦所對(duì)的圓心角小于.所以不能將圓分割成弧長(zhǎng)的比值為的兩段。

          18. (本小題滿(mǎn)分12分)已知A、B分別是橢圓的左右兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P)在橢圓上,線(xiàn)段PB與y軸的交點(diǎn)M為線(xiàn)段PB的中點(diǎn)。

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)點(diǎn)C是橢圓上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),對(duì)于△ABC,求的值

          18.解:(1)由題意知:

          ∴橢圓的標(biāo)準(zhǔn)方程為=1.        

          (2)∵點(diǎn)C在橢圓上,A、B是橢圓的兩個(gè)焦點(diǎn),

          ∴AC+BC=2a=,AB=2c=2 .   

          在△ABC中,由正弦定理,  ,

          .       

          19.(本小題滿(mǎn)分12分)已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是(為大于0的常數(shù)).

           (1)求橢圓的方程;

           (2)設(shè)是橢圓上一點(diǎn),且過(guò)點(diǎn)

          同步練習(xí)冊(cè)答案