題目列表(包括答案和解析)
函數(shù)是定義在
上的奇函數(shù),且
。
(1)求實數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在
上的奇函數(shù),且
。
解得,
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,
,當(dāng)x=1時,
解:(1)是奇函數(shù),
。
即,
,
………………2分
,又
,
,
,
(2)任取,且
,
,………………6分
,
,
,
,
,
在(-1,1)上是增函數(shù)。…………………………………………8分
(3)單調(diào)減區(qū)間為…………………………………………10分
當(dāng),x=-1時,,當(dāng)x=1時,
。
已知函數(shù),
。
(1)求函數(shù)的解析式;
(2)若對于任意,都有
成立,求實數(shù)
的取值范圍;
(3)設(shè),
,且
,求證:
。
已知集合A=,
且,求
的值。
【解析】本試題主要考查了集合的交集,并集的運算綜合運用。
利用已知條件先求解A,B,C集合,然后利用集合的運算表示出a,b的值。
解:
定義在R上的函數(shù)及二次函數(shù)
滿足:
且
。
(1)求和
的解析式;
(2);
(3)設(shè),討論方程
的解的個數(shù)情況.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com