日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. C 查看更多

           

          題目列表(包括答案和解析)

          1、c≠0是方程 ax2+y2=c表示橢圓或雙曲線的( 。

          查看答案和解析>>

          C選修4-4:坐標系與參數(shù)方程已知直線l的參數(shù)方程:
          x=2t
          y=1+4t
          (t為參數(shù)),曲線C的極坐標方程:ρ=2
          2
          sin(θ+
          π
          4
          ),求直線l被曲線C截得的弦長.

          查看答案和解析>>

          7、“c<0”是“實系數(shù)一元二次方程x2+x+c=0有兩異號實根”的
          充要
          條件(填“充分不必要”、“必要不充分”、“充要”或者“既不充分又不必要”)

          查看答案和解析>>

          C
           
          1
          5
          +C
           
          2
          5
          +
          C
          3
          5
          的值為
          25
          25

          查看答案和解析>>

          c=0是拋物線y=ax2+bx+c過坐標原點的( 。

          查看答案和解析>>

           

          一、選擇題

          1. D

          解析:∵a3+a7+a11=3a7為常數(shù),

          ∴S13==13a7,也是常數(shù).

          2. C

          解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

          ∴S9∶S3==1+q3+q6=1-+(-)2=.

          3.A

          4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

          5.B

          6. D

          解析:當q=1時,Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

          當q=-2時,Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

          當q=-時,Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

          7.A   僅②不需要分情況討論,即不需要用條件語句

           

          8. D

          9. D

          解析:易知an=

          ∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

          10.A提示:依題意可得.

          11.B,指輸入的數(shù)據(jù).

          12.D 

          (法一)輾轉(zhuǎn)相除法:         

          的最大公約數(shù).

          (法二)更相減損術(shù):

                  

                  ∴的最大公約數(shù).

          二、填空題

          13.

          14.

          時,是正整數(shù)。

          15.

          解析:bn===a1,bn+1=a1,=(常數(shù)).

          16.-6

          三、解答題

          17.解(1)

               

                以3為公比的等比數(shù)列.

           (2)由(1)知,..

                不適合上式,

                 .

          18.解:(1)an=    (2).

          19.解:(1),

          (2)由(1)得,假設(shè)數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

          ,,,得

          ∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

          20.解:設(shè)未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

          ,

          又設(shè)銷售利潤為數(shù)列,

          ,

          考察的單調(diào)性,

          當n=9或10時,最大

          答:禮品價值為9元或10元時商品獲得最大利潤.

           

          21.解析:(1)時,

          兩式相減:

          故有

          。

          數(shù)列為首項公比的等比數(shù)列。

          (2)

          (3)

             ①

             ②

          ①-②得:

          22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

          (2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

          (3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

          當n≤50時,

          當51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                             =3775+(n-50)×2+=

          ∴綜上所述,.

          w.w.w.k.s.5.u.c.o.m

           

           


          同步練習冊答案