日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即數(shù)列的前6項(xiàng)大于0.從第7項(xiàng)開(kāi)始.以后各項(xiàng)均小于0. 查看更多

           

          題目列表(包括答案和解析)

          (理)一個(gè)數(shù)列中的數(shù)均為奇數(shù)時(shí),稱之為“奇數(shù)數(shù)列”. 我們給定以下法則來(lái)構(gòu)造一個(gè)奇數(shù)數(shù)列{an},對(duì)于任意正整數(shù)n,當(dāng)n為奇數(shù)時(shí),an=n;當(dāng)n為偶數(shù)時(shí),an=a
          n2

          (1)試寫(xiě)出該數(shù)列的前6 項(xiàng);
          (2)研究發(fā)現(xiàn),該數(shù)列中的每一個(gè)奇數(shù)都會(huì)重復(fù)出現(xiàn),那么第5個(gè)5是該數(shù)列的第幾項(xiàng)?
          (3)求該數(shù)列的前2n項(xiàng)的和Tn

          查看答案和解析>>

          設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
          (1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
          (2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
          (3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

          查看答案和解析>>

          設(shè){an}是等差數(shù)列,a1+a3+a5=9,a6=9.則這個(gè)數(shù)列的前6項(xiàng)和等于( 。
          A、12B、24C、36D、48

          查看答案和解析>>

          (2012•株洲模擬)一個(gè)數(shù)列中的數(shù)均為奇數(shù)時(shí),稱之為“奇數(shù)數(shù)列”. 我們給定以下法則來(lái)構(gòu)造一個(gè)奇數(shù)數(shù)列{an},對(duì)于任意正整數(shù)n,當(dāng)n為奇數(shù)時(shí),an=n;當(dāng)n為偶數(shù)時(shí),an=a
          n2

          (1)試寫(xiě)出該數(shù)列的前6項(xiàng);
          (2)研究發(fā)現(xiàn),該數(shù)列中的每一個(gè)奇數(shù)都會(huì)重復(fù)出現(xiàn),那么第10個(gè)5是該數(shù)列的第幾項(xiàng)?
          (3)求該數(shù)列的前2n項(xiàng)的和Tn

          查看答案和解析>>

          設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
          (1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫(xiě)出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
          (2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
          (3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2010項(xiàng)和S2010

          查看答案和解析>>

           

          一、選擇題

          1. D

          解析:∵a3+a7+a11=3a7為常數(shù),

          ∴S13==13a7,也是常數(shù).

          2. C

          解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

          ∴S9∶S3==1+q3+q6=1-+(-)2=.

          3.A

          4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

          5.B

          6. D

          解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

          7.A   僅②不需要分情況討論,即不需要用條件語(yǔ)句

           

          8. D

          9. D

          解析:易知an=

          ∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

          10.A提示:依題意可得.

          11.B,指輸入的數(shù)據(jù).

          12.D 

          (法一)輾轉(zhuǎn)相除法:         

          的最大公約數(shù).

          (法二)更相減損術(shù):

                  

                  ∴的最大公約數(shù).

          二、填空題

          13.

          14.

          當(dāng)時(shí),是正整數(shù)。

          15.

          解析:bn===a1,bn+1=a1,=(常數(shù)).

          16.-6

          三、解答題

          17.解(1)

               

                以3為公比的等比數(shù)列.

           (2)由(1)知,..

                不適合上式,

                 .

          18.解:(1)an=    (2).

          19.解:(1);

          (2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

          ,,得

          ∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

          20.解:設(shè)未贈(zèng)禮品時(shí)的銷售量為a0個(gè),而贈(zèng)送禮品價(jià)值n元時(shí)銷售量為an個(gè),

          ,

          又設(shè)銷售利潤(rùn)為數(shù)列,

          當(dāng)

          考察的單調(diào)性,

          當(dāng)n=9或10時(shí),最大

          答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤(rùn).

           

          21.解析:(1)時(shí),

          兩式相減:

          故有

          。

          數(shù)列為首項(xiàng)公比的等比數(shù)列。

          (2)

          (3)

             ①

             ②

          ①-②得:

          22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

          (2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

          (3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

          當(dāng)n≤50時(shí),

          當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                             =3775+(n-50)×2+=

          ∴綜上所述,.

          w.w.w.k.s.5.u.c.o.m

           

           


          同步練習(xí)冊(cè)答案