日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解析:由題意 .因此由解得. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

          (Ⅰ)求實(shí)數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

          【解析】第一問當(dāng)時(shí),,則

          依題意得:,即    解得

          第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          (Ⅰ)當(dāng)時(shí),,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當(dāng)時(shí),,令

          當(dāng)變化時(shí),的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,!上的最大值為2.

          ②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

          當(dāng)時(shí), 上單調(diào)遞增!最大值為。

          綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

          當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

          (Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

          不妨設(shè),則,顯然

          是以O(shè)為直角頂點(diǎn)的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

          若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時(shí),

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

           

          查看答案和解析>>

          設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

          于是,,

              

          所以,當(dāng),且時(shí),取得最大值1。

          (3)對于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          。

          得定義知,,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對于所有的,的最大值為

           

          查看答案和解析>>

          已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          已知函數(shù),其中.

            (1)若處取得極值,求曲線在點(diǎn)處的切線方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問,處取得極值

          所以,,解得,此時(shí),可得求曲線在點(diǎn)

          處的切線方程為:

          第二問中,易得的分母大于零,

          ①當(dāng)時(shí), ,函數(shù)上單調(diào)遞增;

          ②當(dāng)時(shí),由可得,由解得

          第三問,當(dāng)時(shí)由(2)可知,上處取得最小值,

          當(dāng)時(shí)由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時(shí),求的取值范圍是

           

          查看答案和解析>>

          解析:依題意得f(x)的圖象關(guān)于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

          答案:A

          查看答案和解析>>

           

          一、選擇題

          1. D

          解析:∵a3+a7+a11=3a7為常數(shù),

          ∴S13==13a7,也是常數(shù).

          2. C

          解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

          ∴S9∶S3==1+q3+q6=1-+(-)2=.

          3.A ,

          4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

          5.B

          6. D

          解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

          7.A   僅②不需要分情況討論,即不需要用條件語句

           

          8. D

          9. D

          解析:易知an=

          ∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

          10.A提示:依題意可得.

          11.B,指輸入的數(shù)據(jù).

          12.D 

          (法一)輾轉(zhuǎn)相除法:         

          的最大公約數(shù).

          (法二)更相減損術(shù):

                  

                  ∴的最大公約數(shù).

          二、填空題

          13.

          14.

          當(dāng)時(shí),是正整數(shù)。

          15.

          解析:bn===a1,bn+1=a1,=(常數(shù)).

          16.-6

          三、解答題

          17.解(1)

               

                以3為公比的等比數(shù)列.

           (2)由(1)知,..

                不適合上式,

                 .

          18.解:(1)an=    (2).

          19.解:(1);

          (2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

          ,,,得

          ∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

          20.解:設(shè)未贈禮品時(shí)的銷售量為a0個(gè),而贈送禮品價(jià)值n元時(shí)銷售量為an個(gè),

          ,

          又設(shè)銷售利潤為數(shù)列

          當(dāng),

          考察的單調(diào)性,

          當(dāng)n=9或10時(shí),最大

          答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤.

           

          21.解析:(1)時(shí),

          兩式相減:

          故有

          。

          數(shù)列為首項(xiàng)公比的等比數(shù)列。

          (2)

          (3)

             ①

             ②

          ①-②得:

          22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

          (2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

          (3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

          當(dāng)n≤50時(shí),

          當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                             =3775+(n-50)×2+=

          ∴綜上所述,.

          w.w.w.k.s.5.u.c.o.m

           

           


          同步練習(xí)冊答案