日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解析:(1)∵.是方程的兩個根.∴, 查看更多

           

          題目列表(包括答案和解析)

          已知,設(shè)是方程的兩個根,不等式對任意實(shí)數(shù)恒成立;函數(shù)有兩個不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當(dāng)a∈[1,2]時,的最小值為3. 當(dāng)a∈[1,2]時,的最小值為3.

          要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          可得到要使“P∧Q”為真命題,只需P真Q真即可。

          解:由題設(shè)x1+x2=a,x1x2=-2,

          ∴|x1-x2|=.

          當(dāng)a∈[1,2]時,的最小值為3.

          要使|m-5|≤|x1-x2|對任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

          由已知,得f(x)=3x2+2mx+m+=0的判別式

          Δ=4m2-12(m+)=4m2-12m-16>0,

          得m<-1或m>4.

          綜上,要使“P∧Q”為真命題,只需P真Q真,即

          解得實(shí)數(shù)m的取值范圍是(4,8]

           

          查看答案和解析>>

          在兩個變量x,y進(jìn)行曲線回歸分析時,有下列步驟:
          ①    對所求出的回歸方程作出解釋;②收集數(shù)據(jù)③求線性回歸方程;
          ④求相關(guān)系數(shù);⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是
          A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①

          查看答案和解析>>

          命題方程有兩個不等的正實(shí)數(shù)根, 命題方程無實(shí)數(shù)根。若“”為真命題,求的取值范圍。

          【解析】本試題主要考查了命題的真值問題,以及二次方程根的綜合運(yùn)用。

          解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題

          當(dāng)p為真命題時,則,得;

          當(dāng)q為真命題時,則

          當(dāng)q和p都是真命題時,得

           

          查看答案和解析>>

          4、在對兩個變量x,y進(jìn)行線性回歸分析時,有下列步驟:
          ①對所求出的回歸直線方程作出解釋;
          ②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;
          ③求線性回歸方程;④求相關(guān)系數(shù);
          ⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.
          如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是(  )

          查看答案和解析>>

          2.在兩個變量x,y進(jìn)行曲線回歸分析時,有下列步驟:

          ①     對所求出的回歸方程作出解釋;②收集數(shù)據(jù)③求線性回歸方程;

          ④求相關(guān)系數(shù);⑤根據(jù)所搜集的數(shù)據(jù)繪制散點(diǎn)圖.如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是

          A.①②⑤③④            B.③②④⑤①            C.②④③①⑤            D.②⑤④③①

          查看答案和解析>>

           

          一、選擇題

          1. D

          解析:∵a3+a7+a11=3a7為常數(shù),

          ∴S13==13a7,也是常數(shù).

          2. C

          解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

          ∴S9∶S3==1+q3+q6=1-+(-)2=.

          3.A

          4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

          5.B

          6. D

          解析:當(dāng)q=1時,Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-2時,Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

          當(dāng)q=-時,Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

          7.A   僅②不需要分情況討論,即不需要用條件語句

           

          8. D

          9. D

          解析:易知an=

          ∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

          10.A提示:依題意可得.

          11.B,指輸入的數(shù)據(jù).

          12.D 

          (法一)輾轉(zhuǎn)相除法:         

          的最大公約數(shù).

          (法二)更相減損術(shù):

                  

                  ∴的最大公約數(shù).

          二、填空題

          13.

          14.

          當(dāng)時,是正整數(shù)。

          15.

          解析:bn===a1,bn+1=a1,=(常數(shù)).

          16.-6

          三、解答題

          17.解(1)

               

                以3為公比的等比數(shù)列.

           (2)由(1)知,..

                不適合上式,

                 .

          18.解:(1)an=    (2).

          19.解:(1),;

          (2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

          ,,得

          ∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

          20.解:設(shè)未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

          ,

          又設(shè)銷售利潤為數(shù)列,

          當(dāng)

          考察的單調(diào)性,

          當(dāng)n=9或10時,最大

          答:禮品價值為9元或10元時商品獲得最大利潤.

           

          21.解析:(1)時,

          兩式相減:

          故有

          。

          數(shù)列為首項(xiàng)公比的等比數(shù)列。

          (2)

          (3)

             ①

             ②

          ①-②得:

          22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

          (2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

          (3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

          當(dāng)n≤50時,

          當(dāng)51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                             =3775+(n-50)×2+=

          ∴綜上所述,.

          w.w.w.k.s.5.u.c.o.m

           

           


          同步練習(xí)冊答案